Let $X$ be a random variable with CDF: $$F_{X}(x)= 1-e^{\lambda x}$$ Let $Y$ be a random variable defined in terms of $X$ as $Y=m$ if $m\leq X < m+1$, where $m$ is a non-negative integer. Compute the distribution of $Y$.
My idea was to apply $$f_{Y}(y)=f_{X}(h^{-1}(y))\left|\frac{d}{dy}h^{-1}(y)\right|$$
First I try $f_{X}(x)= \lambda e^{-\lambda x}$ And the funtion $Y=h(X)=m$. But I can do much with this:$$f_{Y}(y)=f_{X}(h^{-1}(?))\left|\frac{d}{dy}h^{-1}(?)\right|$$
Solution: $Y\sim Geom(1-e^{-\lambda})$ $\Rightarrow$ $f_{Y}(y)=(1-e^{-\lambda})e^{-\lambda}$