I am currently studying Introduction to Electrodynamics, fourth edition, by David J. Griffiths. Chapter 1.1.3 Triple Products introduces the vector triple product as follows:
(ii) Vector triple product: $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$. The vector triple product can be simplified by the so-called BAC-CAB rule:
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}). \tag{1.17}$$
Notice that
$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = - \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = - \mathbf{A}(\mathbf{B} \cdot \mathbf{C}) + \mathbf{B}(\mathbf{A} \cdot \mathbf{C})$$
is an entirely different vector (cross-products are not associative). All higher vector products can be similarly reduced, often by repeated application of Eq. 1.17, so it is never necessary for an expression to contain more than one cross product in any term. For instance,
$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C});$$
$$\mathbf{A} \times [ \mathbf{B} \times (\mathbf{C} \times \mathbf{D})] = \mathbf{B}[\mathbf{A} \cdot (\mathbf{C} \times \mathbf{D})] - (\mathbf{A} \cdot \mathbf{B})(\mathbf{C} \times \mathbf{D}). \tag{1.18}$$
This all seems like total gibberish to me. For vectors $\mathbf{A}$ and $\mathbf{B}$, the expression $\mathbf{A} (\mathbf{B})$ does not make sense. Furthermore, the author claims that $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = - \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = - \mathbf{A}(\mathbf{B} \cdot \mathbf{C}) + \mathbf{B}(\mathbf{A} \cdot \mathbf{C})$; although, it is not clear to me that this is true, nor does the author justify their claim. I do not understand what the "BAC-CAB rule" is supposed to be, nor do I understand the broader points that the author is trying to make in this section.
I would greatly appreciate it if people would please take the time to clarify this.