Find eigenvalues and eigenvectors of a matrix $A_{n\times n}$ where elements $a_{ij} $ of $A_{n\times n}$ are given as
\begin{cases} \alpha, & \text{if }i=j \\[2ex] 1, & \text{if }|i-j|=1\\[2ex] 0 & \text{otherwise} \end{cases}
where $\alpha$ is a constant.
I tried finding out the eigenvalues by finding the polynomial equation of this equation and the result which I was getting was of the form:-
$|A_{n\times n}-\lambda I_{n\times n}|=(\alpha-\lambda)(|A_{(n-1)\times (n-1)}-\lambda I_{(n-1)\times (n-1)}|-|A_{(n-2)\times (n-2)}-\lambda I_{(n-2)\times (n-2)}|)$
But I was not able to go further.