1

Let $P \in M (n \times n, \mathbb{R})$ be a primitive matrix. $1$ is a eigenvalue of $P$ and $(1,\dots,1)$ is the associated right eigenvector.

How can show that the spectral radius $\rho(P):=$max$\{|\lambda| : \lambda$ is a eigenvalue of $P\}$ of $P$ is 1?

Hint: Use Gelfand's formula.

Tino
  • 137

0 Answers0