I am going through the proof by Jitsuro Nagura which shows that there is always a prime between $x$ and $\frac{6x}{5}$ where $x \ge 25$.
Nagura uses the following definitions:
$$\vartheta(x) = \sum_{p \le x} \log p$$
$$\psi(x) = \sum_{m=1}^{\infty}\vartheta(\sqrt[m]{x})$$
Then as part of the main theorem, he states:
$$\psi(x) - \psi(\sqrt{x}) - \psi(\sqrt[3]{x}) \ge \vartheta(x) \ge \psi(x) - \psi(\sqrt{x}) - \psi(\sqrt[3]{x}) - \psi(\sqrt[5]{x})$$
I've reviewed this inequality and am not clear on its justification. If someone could help explain how this inequality is proved, I would really appreciate
Thanks,
-Larry
Update: I think that I have figured out part of the inequality.
If I am doing my math right:
$$\psi(x) - \psi(\sqrt{x}) - \psi(\sqrt[3]{x}) - \psi(\sqrt[5]{x}) = $$
$$\vartheta(x) - \vartheta(\sqrt[6]{x}) + \vartheta(\sqrt[7]{x}) - \vartheta(\sqrt[10]{x}) + \vartheta(\sqrt[11]{x}) - \vartheta(\sqrt[12]{x}) + \vartheta(\sqrt[13]{x}) - \vartheta(\sqrt[15]{x}) + \vartheta(\sqrt[17]{x}) - \vartheta(\sqrt[18]{x}) + \vartheta(\sqrt[19]{x}) -\vartheta(\sqrt[20]{x}) +\vartheta(\sqrt[23]{x}) - \vartheta(\sqrt[24]{x}) + \vartheta(\sqrt[29]{x}) -2\vartheta(\sqrt[30]{x}) + \ldots \le $$
$$\vartheta(x) - \vartheta(\sqrt[6]{x}) + \ldots + \vartheta(\sqrt[30]{x}) + \ldots$$
By the properties of decreasing sequences of alternating signs:
$$\vartheta(x) - \vartheta(\sqrt[6]{x}) + \ldots + \vartheta(\sqrt[30]{x}) + \ldots \le \vartheta$$