10

For any positive integer $n\geq 2$ prove that$$\int_0^\infty\frac{\mathrm dw}{(n+w)(\pi^2+(\log w)^2)}=\frac1{\log n}-\frac1{n-1}.$$

Wolfram Alpha unfortunately cannot give a step-by-step solution (it does not even give me the form on the above RHS even if I set $n=10$, say, but comparing first few decimal digits shows that the result is almost surely correct). The only idea I had was $w=\mathrm e^{\pi\tan \theta}$ in order to kill the second multiplier of the denominator, but then I cannot deal with $$\frac{1}{\pi}\int_{-\pi/2}^{\pi/2}\frac{\exp(\pi\tan \theta)}{(n+\exp(\pi\tan \theta))}\,\mathrm d\theta.$$ Any help appreciated!

UPDATE: Letting $w=\mathrm e^z$ and then using the residue theorem on $\displaystyle \int_{-\infty}^{\infty} \frac{\mathrm dz}{(n\mathrm e^{-z}+1)(\pi^2 + z^2)}$ with the semicircular contour centered at $0$ and radius $R$ (in the upper-half plane) seems to be a very promising idea, but unfortunately the contribution from the circular part does not tend to $0$ as $R\to \infty$. :(

Ѕᴀᴀᴅ
  • 35,369
DesmondMiles
  • 2,931
  • 2
    As a small advice, using better tags and title can draw a lot of attention to your question. Regarding the integral, a solution can be found here on AoPS using real analysis, and one using complex analysis here. I think it would be inappropriate and selfish for me to post an answer, but perhaps you can self-answer the question if you want. – Zacky May 11 '20 at 21:09
  • 1
    Wow, unbelieavable! Thanks a lot! – DesmondMiles May 11 '20 at 21:15
  • @Zacky have u heard of community wiki answers? – mathworker21 May 11 '20 at 22:08
  • @DesmondMiles The second factor tends to zero, so the variant with the exponents is correct. This fact should from the Residue theorem directly and does not require citation of it's parts. – Yuri Negometyanov May 13 '20 at 04:05

2 Answers2

4

$\def\C{\mathbb{C}}\def\d{\mathrm{d}}\def\e{\mathrm{e}}\def\i{\mathrm{i}}\def\R{\mathbb{R}}\def\peq{\mathrel{\phantom{=}}{}}\DeclareMathOperator{\Im}{Im}\DeclareMathOperator{\Re}{Re}\DeclareMathOperator{\Res}{Res}$A general proposition can be proved by contour integration:

Proposition: Suppose that $f: \C → \C$ is a rational function with poles $z_1, \cdots, z_n \in \C \setminus \R_{\geqslant 0}$, all of which are simple. If $f(∞) = 0$ and $f(-1) ≠ 0$, then$$ \int_0^{+∞} \frac{f(x)}{(\ln x)^2 + π^2} \,\d x = \sum_{k = 0}^n \Res\left( \frac{f(z)}{\ln z - π\i}, z_k \right), $$ where $z_0 = -1$, $\ln z = \ln|z| + \i \arg z$, $\arg z \in (0, 2π)$.

Proof: There exists $g \in \C[z]$ such that $f(z) = \dfrac{g(z)}{\prod\limits_{k = 1}^n (z - z_k)}$, and $f(∞) = 0$ implies that $\deg g \leqslant n - 1$ and $f(z) = O\left( \dfrac{1}{z} \right)$ as $z → ∞$.

Define $h(z) = \dfrac{f(z)}{\ln z - π\i}$ for $z \in \C \setminus \R_{\geqslant 0}$. For $R > \max\limits_{0 \leqslant k \leqslant n} |z_k|$, define the (counterclockwise-oriented) contour $γ_R = γ_{1, R} \cup γ_{2, R} \cup γ_{3, R}$, where$$ γ_{1, R} = \{t \mid 0 \leqslant t \leqslant R\},\ γ_{2, R} = \{R \e^{\i t} \mid 0 < t < 2π\},\ γ_{3, R} = \{t \mid R \geqslant t \geqslant 0\}. $$ Note that for $x \in \R_+$,$$ \lim_{\substack{z → x\\\Im z > 0}} h(z) = \frac{f(x)}{\ln x - π\i},\quad \lim_{\substack{z → x\\\Im z < 0}} h(z) = \frac{f(x)}{\ln x + π\i}, $$ thus\begin{align*} &\peq \int_{γ_R} h(z) \,\d z = \int_{γ_{R_1}} h(z) \,\d z + \int_{γ_{R_2}} h(z) \,\d z + \int_{γ_{R_3}} h(z) \,\d z\\ &= \int_0^R \frac{f(x)}{\ln x - π\i} \,\d x + \int_{γ_{R_2}} h(z) \,\d z + \int_R^0 \frac{f(x)}{\ln x + π\i} \,\d x\\ &= \int_0^R \frac{f(x)}{\ln x - π\i} \,\d x - \int_0^R \frac{f(x)}{\ln x + π\i} \,\d x + \int_{γ_{R_2}} h(z) \,\d z\\ &= 2π\i \int_0^R \frac{f(x)}{(\ln x)^2 + π^2} \,\d x + \int_{γ_{R_2}} h(z) \,\d z. \end{align*} Since the poles of $h$ are $z_0, \cdots, z_n$ and are all simple, by Cauchy's integral formula,$$ \int_{γ_R} h(z) \,\d z = 2π\i \sum_{k = 0}^n \Res(h, z_k). $$ Because $|h(z)| = \dfrac{|f(z)|}{|\ln z - π\i|} \leqslant \dfrac{|f(z)|}{\ln|z|}$, so$$ \left| \int_{γ_{R_2}} h(z) \,\d z \right| \leqslant \int_{γ_{R_2}} |h(z)| \,\d z \leqslant 2πR \max_{|z| = R} |h(z)| \leqslant \frac{2πR}{\ln R} \max_{|z| = R} |f(z)|, $$ combining with $f(z) = O\left( \dfrac{1}{z} \right)$ ($z → ∞$) yields $\displaystyle \lim_{R → +∞} \int_{γ_{R_2}} h(z) \,\d z = 0$. Therefore,\begin{gather*} 2π\i \sum_{k = 0}^n \Res(h, z_k) = \lim_{R → +∞} \int_{γ_R} h(z) \,\d z\\ = 2π\i \lim_{R → +∞} \int_0^R \frac{f(x)}{(\ln x)^2 + π^2} \,\d x + \lim_{R → +∞} \int_{γ_{R_2}} h(z) \,\d z = 2π\i \int_0^{+∞} \frac{f(x)}{(\ln x)^2 + π^2} \,\d x, \end{gather*} which implies\begin{gather*} \int_0^{+∞} \frac{f(x)}{(\ln x)^2 + π^2} \,\d x = \sum_{k = 0}^n \Res(h, z_k) = \sum_{k = 0}^n \Res\left( \frac{f(z)}{\ln z - π\i}, z_k \right). \tag*{$\square$} \end{gather*}

Now return to the question. For $n > 0$ with $n ≠ 1$, by the proposition,\begin{gather*} \int_0^{+∞} \frac{1}{(n + x)((\ln x)^2 + π^2)} \,\d x\\ = \Res\left( \frac{1}{(n + z)(\ln z - π\i)}, -1 \right) + \Res\left( \frac{1}{(n + z)(\ln z - π\i)}, -n \right). \end{gather*} Since\begin{gather*} \Res\left( \frac{1}{(n + z)(\ln z - π\i)}, -1 \right) = \lim_{z → -1} \frac{z + 1}{(n + z)(\ln z - π\i)} = \lim_{w → π\i} \frac{\e^w + 1}{(n + \e^w)(w - π\i)}\\ = \left( \lim_{w → π\i} \frac{1}{n + \e^w} \right) \left( \lim_{w → π\i} \frac{\e^w + 1}{w - π\i} \right) = \frac{1}{n - 1} · (\e^w)'\bigr|_{w = π\i} = -\frac{1}{n - 1}, \end{gather*}$$ \Res\left( \frac{1}{(n + z)(\ln z - π\i)}, -n \right) = \lim_{z → -n} \frac{z + n}{(n + z)(\ln z - π\i)} = \frac{1}{\ln(-n) - π\i} = \frac{1}{\ln n}, $$ then$$ \int_0^{+∞} \frac{1}{(n + x)((\ln x)^2 + π^2)} \,\d x = \frac{1}{\ln n} - \frac{1}{n - 1}. $$

Ѕᴀᴀᴅ
  • 35,369
1

The purpose of this answer is to show the limits of the residue method for computing real integrals. The first question I asked myself when seeing this integral is "why is the $\pi^2$ there?" This answer resolves that question by showing that the residue method for evaluating real integrals only works when the term in the denominator is $\log^2(x) + k^2$ for $k=m\pi$ for some positive integer $m$.

Consider the integral $$ I(a,k) = \int_0^{\infty} \frac{dx}{(x+a)(\log^2 x + k^2)} $$ for $a\ge 0$ and $k>0$ (note that this uses $a$ instead of $n$ and the more general $k$ instead of $\pi$).

The special case $I(0,k)$ is easy to compute since the integrand has a closed-form antiderivative in this case: $$ I(0,k) = \int_0^{\infty} \frac{dx}{x (\log^2(x) + k^2)} = \left.\frac{1}{k} \arctan(\log(x)/k)\right|_0^{\infty} = \frac{\pi}{k}. $$

The special case $I(1,k)$ is also fairly easy to compute. First use the substitution $u=1/x$ (as suggested at the AoPS link in Zacky's comment): $$ I(1,k) = \int_0^{\infty} \frac{dx}{(x+1)(\log^2(x) + k^2)} = \int_0^{\infty} \frac{du}{u(u+1)(\log^2(u) + k^2)}. $$ Note that $$ \frac{1}{u(u+1)} = \frac{1}{u} - \frac{1}{u+1}. $$ So $I(1,k) = \pi/k - I(1,k)$. This means $$ I(1,k) = \frac{\pi}{2k}. $$

For general $a \ge 0$, we can try to use the residue theorem. First use the substitution $u=\log x$ to get $$ I(a,k) = \int_{-\infty}^{\infty} \frac{e^u}{(e^u + a)(u^2 + k^2)} du. $$

Now define $$ f(z) = \frac{e^z}{(e^z+a)(z - ki)}. $$ Let $\gamma$ be the boundary of the rectangle with vertices at the points $-R$, $R$, $R+2n\pi i$, and $-R+2n\pi i$ in the complex plane with $n$ some positive integer.
This is the same $f(z)$ and similar $\gamma$ to those used in the answer linked in Zacky's comment. Let the parameterizations of the edges of the rectangle (starting with the bottom edge and moving counter-clockwise) be $x(t)+y(t)i = t$ (for $-R\le t \le R$), $x(t)+y(t)i = R+ti$ (for $0\le t\le 2n\pi$), $x(t)+y(t)i = t+2n\pi i$ (for $R\ge t \ge -R$), and $x(t)+y(t)i = -R+ti$ (for $2n\pi \ge t \ge 0$). Then the contour integral of $f(z)$ around the curve $\gamma$ is $$ \begin{align} \int_{\gamma} f(z) dz &= \int_{-R}^{R} \frac{e^t}{(e^t+a)(t-ki)} dt \ & \quad + \int_0^{2n\pi} \frac{i\exp(R+ti)}{(\exp(R+ti)+a)(R+ti-ki)} dt \ & \quad + \int_R^{-R} \frac{\exp(t+2n\pi i)} {(\exp(t+2n\pi i) + a) (t + (2n\pi -k)i)} dt \ & \quad + \int_{2n\pi}^{0} \frac{i \exp(-R+ti) dt} {(\exp(-R+ti) + a)(-R+ti-ki)}. \end{align} $$ The two portions along the vertical edges vanish as $R\rightarrow\infty$. If we let $k=n\pi$ (and only if we let $k=n\pi$), then the two portions along the horizontal edges combine into $$ \int_{-R}^R \frac{e^t}{e^t+a}\left(\frac{1}{t-ki} - \frac{1}{t+ki}\right) dt = 2\pi ni \int_{-R}^R \frac{e^t}{(e^t+a)(t^2+k^2)} dt. \tag{1}\label{contour_integral} $$ The limit of the integral in the right-hand side of\eqref{contour_integral} as $R\rightarrow\infty$ is $I(a,k)$. So by the residue theorem, $$ I(a,n\pi) = \frac{1}{n} \sum_{j} \textrm{Res}(f,c_j) $$ where the $c_j$ are the poles of $f(z)$ inside $\gamma$. The poles of $f$ inside $\gamma$ are the points where $z=ki=n\pi i$ and $e^z+a=0$. So $c_0 = n\pi i$ and $c_j = \log a + i\pi + 2\pi (j-1)i$ for $j=1,2,\dots, n$. All poles are simple, meaning the residues can all be computed using $\lim_{z\rightarrow c_j} f(z)(z-c_j)$. Using this method, $$ \textrm{Res}(f,c_0) = \frac{e^{n\pi i}}{e^{n\pi i}+a} = \frac{(-1)^n}{(-1)^n + a} $$ and $$ \textrm{Res}(f,c_j) = \frac{1}{\log a + \pi i(1+2(j-1) - n)} \quad \textrm{for} \ j=1,2,\dots n. $$ In the sum of the residues for $j=1,2,\dots n$, the imaginary part is 0. The real part is $$ \sum_{j=1}^n \textrm{Res}(f,c_j) = \sum_{j=1}^n \frac{\log a}{\log^2 a + \pi^2(1 + 2(j-1) - n)^2}. $$

So $$ I(a,n\pi) = \frac{1}{n}\left(\frac{(-1)^n}{(-1)^n + a} + \sum_{j=1}^n \frac{\log a}{\log^2 a + \pi^2(1 + 2(j-1) - n)^2} \right). $$ For $n=1$, this is $-1/(a-1) + 1/\log a$.

So the residue method for computing the integral works, but only for $k=n\pi$. For all other values of $k$, assuming $a\ne 0$ and $a\ne 1$, numerical integration is necessary. The form of the integral $$ I(a,k) = \frac{1}{k} \int_{-\pi/2}^{\pi/2} \frac{\exp(k \tan\theta)}{\exp(k\tan\theta) + a} d\theta $$ is better for numerical integration since the domain is finite. This can be split into two integrals to keep the argument of the exponential function below positive infinity: $$ I(a,k) = \frac{1}{k}\int_{-\pi/2}^0 \frac{\exp(k \tan\theta)}{\exp(k\tan\theta) + a} d\theta + \frac{1}{k}\int_0^{\pi/2} \frac{d\theta}{1 + a\exp(-k\tan\theta)}. \tag{2}\label{sum_of_integrals} $$ Gauss quadrature produces a very fast and accurate answer using \eqref{sum_of_integrals}. It does not matter that $\tan\theta$ is infinite at the interval endpoints since Gauss quadrature does not evaluate the function at the interval endpoints.

J. Heller
  • 1,950