The inequality you have written is true for concave functions (it is basically Jensen's inequality for -f). The function is twice differentiable on $(0,\infty)^2$, so we may use its Hessian matrix. A twice-differentiable function is concave if and only if its Hessian matrix is negative-semidefinite (has all eigenvalues negative or zero).
\begin{align}
H &= \begin{pmatrix}-\frac{\sqrt{y}}{4x^\frac{3}{2}} & \frac{1}{4\sqrt{x}\sqrt{y}}\\ \frac{1}{4\sqrt{x}\sqrt{y}}& -\frac{\sqrt{x}}{4y^\frac{3}{2}}\end{pmatrix}\\
&= \frac{1}{4\sqrt{x}\sqrt{y}}\begin{pmatrix}-\frac{y}{x} & 1\\ 1& -\frac{x}{y}\end{pmatrix}
\end{align}
We can compute the eigenvalues of the second matrix as solutions of
\begin{align}
\left(\lambda + \frac{y}{x}\right)\left(\lambda + \frac{x}{y}\right) -1 = 0
\end{align}
this is pretty easy to solve with the quadratic formula
\begin{align}
0&=\lambda^2 + \lambda\left(\frac{y}{x} + \frac{x}{y}\right) + 1 -1\\
\lambda_\pm &= -\frac{1}{2}\left(\frac{y}{x} + \frac{x}{y}\right)\pm\frac{1}{2}\sqrt{\left(\frac{y}{x} + \frac{x}{y}\right)^2 }\\
\implies \lambda_+ &= 0\\
\lambda_- &= -\frac{y}{x} - \frac{x}{y}.
\end{align}
So one eigenvalue is negative and the other is zero, so the matrix is negative-semidefinite and $f$ is concave.