Let ${ H }$ be a real Hilbert space. Let ${ x _1, \ldots, x _n \in H . }$
Can we compute the space of linear dependencies amongst ${ x _1, \ldots, x _n }$?
Can we compute the space
$${ L = \lbrace \alpha \in \mathbb{R} ^n : \alpha _1 x _1 + \ldots + \alpha _n x _n = 0 \rbrace \, \, ? }$$
Let ${ \alpha \in L . }$ Note that taking inner products
$${ {\begin{aligned} &\, \alpha _1 (x _1 \, \vert \, x _1) + \ldots + \alpha _n (x _1 \, \vert \, x _n) = 0, \\ &\, \, \quad \quad \vdots \\ &\, \, \alpha _1 (x _n \, \vert \, x _1) + \ldots + \alpha _n (x _n \, \vert \, x _n) = 0 . \end{aligned}} }$$
Hence ${ \alpha \in \ker (G) }$ where ${ G = ((x _i \, \vert \, x _j)) _{i, j = 1} ^{n} . }$
Hence ${ L \subseteq \ker (G) . }$
Is ${ L = \ker (G) }$?
Let ${ \alpha \in \ker (G) . }$ Note that
$${ {\begin{aligned} &\, \alpha _1 (x _1 \, \vert \, x _1) + \ldots + \alpha _n (x _1 \, \vert \, x _n) = 0, \\ &\, \, \quad \quad \vdots \\ &\, \, \alpha _1 (x _n \, \vert \, x _1) + \ldots + \alpha _n (x _n \, \vert \, x _n) = 0 . \end{aligned}} }$$
Hence
$${ (\alpha _1 x _1 + \ldots + \alpha _n x _n \, \vert \, \alpha _1 x _1 + \ldots + \alpha _n x _n) = 0 . }$$
Hence
$${ \alpha _1 x _1 + \ldots + \alpha _n x _n = 0 .}$$
Hence ${ \alpha \in L . }$
Hence
$${ L = \ker(G) }$$
as needed.
Note that especially the space of linear dependencies amongst ${ x _1, \ldots, x _n }$ depends only on the inner products ${ ((x _i \, \vert \, x _j) ) _{i, j = 1} ^{n} . }$