5

I saw nice geometric proof of $\sin{(x + y)} = \sin{x}\cos{y} + \sin{y}\cos{x}$ using unit circle. But I can't find proof when $x + y > 90^\circ.$

Is there intuitive, "simple" or geometric way to prove this? Can we maybe transform unit circle or what is going on here?

Quanto
  • 120,125
1b3b
  • 1,334

3 Answers3

4

Let $x$ and $y$ be any argument angles in the Argand diagram. Then, $ e^{i (x+y)} = e^{i x } e^{i y }$, or

$$\cos (x+y)+ i\sin(x+y) =(\cos x+i \sin x)(\cos y+i \sin y)$$

Match the real and imaginary parts to obtain

$$\cos(x+y)=\cos x\cos y-\sin x\sin y$$ $$\sin(x+y)=\sin x\cos y+\cos x\sin y$$

Quanto
  • 120,125
  • The only thing that is perhaps a little confusing here is the direction of the implications. I think it is more natural to prove $e^{i(x + y)}$ (#) using this basic trig identities (sine and cosine of the sum of angles) than vice versa (but I know that $e^{i(x + y)}$) can be proved by definition $e^{i\theta} = (1 + \frac{i\theta}{n})^n$ setting $\theta = x + y,$ and then of course (#) holds). Thanks for the nice trick, I didn't think of that! – 1b3b May 01 '20 at 22:39
3

Sorry I didn’t see this one earlier. When sitting in on high-school trigonometry classes, I’ve wondered about what the various proofs of sine addition might be, and which one might be the best. There is the purely geometric proof, which you know, but is no good for $x+y>90^\circ$. And there is the proof recommended by @intelligentipauca, involving a minimum of geometry but a great load of algebraic manipulation, and which ends up with no intuition on the student’s part. Here’s a proof that’s in between, involving a minimum of geometry, of trigonometry, and of algebra. It’s only good for $x<90^\circ$, similarly for $y$, but $x+y$ can be anything smaller than $180^\circ$.

Start with a horizontal line, and erect a perpendicular segment on it, and call its length $1$. Draw angles $x$ and $y$ sharing the perpendicular, but on opposite sides, so that they make an angle of $x+y$ together. sine addition

Now you see that the two horizontal segments are $\tan x$ and $\tan y$, and that the right-hand hypotenuse is $\sec y$.

Next, call in the Law of Sines, according to which \begin{align} \frac{\sin(x+y)}{\tan x + \tan y}&=\frac{\sin(90^\circ-x)}{\sec y}\\ &=\cos x\cos y\,. \end{align} Now multiply both sides by $\tan x+\tan y$ and get $\sin(x+y)=(\tan x+\tan y)\cos x\cos y$. And there’s your addition formula for sines.

Lubin
  • 65,209
0

The way I was introduced to the identities in high school precal. Let's start with subtraction of angles.

Let $A = (\cos\alpha, \sin\alpha)$ and $B = (\cos\beta, \sin\beta)$ be two points on the unit circle.

Points A and B on the unit circle

Then the distance between them is

$$d = \sqrt{(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2}$$ $$= \sqrt{\cos^2\alpha - 2\cos\alpha\cos\beta + \cos^2\beta + \sin^2\alpha - 2\sin\alpha\sin\beta + \sin^2\beta}$$ $$= \sqrt{(\cos^2\alpha + \sin^2\alpha) + (\cos^2\beta + \sin^2\beta) - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta}$$ $$= \sqrt{2 - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta}$$

Now, let's rotate the coordinate system so that $B = (1, 0)$ and $A = (\cos(\alpha - \beta), \sin(\alpha - \beta))$.

Rotated so that point B is on the x-axis

Then the distance between the points is:

$$d = \sqrt{(\cos(\alpha - \beta) - 1)^2 + \sin^2(\alpha-\beta)}$$ $$= \sqrt{\cos^2(\alpha - \beta) - 2\cos(\alpha - \beta) + 1 + \sin^2(\alpha-\beta)}$$ $$= \sqrt{1 + (\cos^2(\alpha - \beta) + \sin^2(\alpha-\beta)) - 2\cos(\alpha - \beta)}$$ $$= \sqrt{2 - 2\cos(\alpha - \beta)}$$

But since the distance between $A$ and $B$ must be the same either way, we have:

$$= \sqrt{2 - 2\cos(\alpha - \beta)} = \sqrt{2 - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta}$$ $$= 2 - 2\cos(\alpha - \beta) = 2 - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta$$ $$-2\cos(\alpha - \beta) = -2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta$$ $$\boxed{\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta}$$

Now, let's do $\cos(\alpha + \beta)$. That's equivalent to $\cos(\alpha - (-\beta))$, so by the above formula,

$$\cos(\alpha + \beta) = \cos\alpha\cos(-\beta) + \sin\alpha\sin(-\beta)$$

But $\cos$ is even (i.e., $\cos(-\beta) = \cos(\beta)$) and $\sin$ is odd (i.e., $\sin(-\beta) = -\sin(\beta)$), so:

$$\boxed{\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta}$$

Now we need similar formulas for $\sin$. Start by using the Pythagorean identity

$$\sin^2(\alpha - \beta) + \cos^2(\alpha - \beta) = 1$$ $$\sin^2(\alpha - \beta) + (\cos\alpha\cos\beta + \sin\alpha\sin\beta)^2 = 1$$ $$\sin^2(\alpha - \beta) + \cos^2\alpha\cos^2\beta + 2\cos\alpha\cos\beta\sin\alpha\sin\beta + \sin^2\alpha\sin^2\beta = 1$$ $$\sin^2(\alpha - \beta) + (1 - \sin^2\alpha)(1 - \sin^2\beta) + 2\cos\alpha\cos\beta\sin\alpha\sin\beta + \sin^2\alpha\sin^2\beta = 1$$ $$\sin^2(\alpha - \beta) + 1 - \sin^2\alpha - \sin^2\beta + \sin^2\alpha\sin^2\beta + 2\cos\alpha\cos\beta\sin\alpha\sin\beta + \sin^2\alpha\sin^2\beta = 1$$ $$\sin^2(\alpha - \beta) = \sin^2\alpha + \sin^2\beta - 2\sin^2\alpha\sin^2\beta - 2\cos\alpha\cos\beta\sin\alpha\sin\beta$$ $$\sin^2(\alpha - \beta) = (\sin^2\alpha)(1 - \sin^2\beta) + (\sin^2\beta)(1 - \sin^2\alpha) - 2\cos\alpha\cos\beta\sin\alpha\sin\beta$$ $$\sin^2(\alpha - \beta) = \sin^2\alpha\cos^2\beta + \cos^2\alpha\sin^2\beta - 2\cos\alpha\cos\beta\sin\alpha\sin\beta$$ $$\sin^2(\alpha - \beta) = (\sin\alpha\cos\beta - \cos\alpha\sin\beta)^2$$ $$\sin(\alpha - \beta) = \pm (\sin\alpha\cos\beta - \cos\alpha\sin\beta)$$

Which leaves the question: Plus or minus? If we plug in $\beta = 0$, we get:

$$\sin(\alpha) = \pm (\sin\alpha\cos(0) - \cos\alpha\sin(0)) = \pm \sin\alpha$$

Similarly, if $\alpha = 90°$, then:

$$\sin(90° - \beta) = \pm (\sin(90°)\cos\beta - \cos(90°)\sin\beta)$$ $$\cos(\beta) = \pm \cos\beta$$

Clearly, plus is the correct choice.

$$\boxed{\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta}$$

And, using the same odd/even function approach as before,

$$\sin(\alpha + \beta) = \sin\alpha\cos(-\beta) - \cos\alpha\sin(-\beta)$$ $$\boxed{\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta}$$

Note that I have not made an acute angle assumption anywhere.

Dan
  • 18,262