Since it is given that $Q$ is $\left(\left(\mathcal{A}_1\otimes\mathcal{A}_2\right)/\mathfrak{B}\right)$-measurable, all that's left to check is that for all $B_3\in\mathcal{A}_3$ and all $B_{1,2}\in\mathcal{A}_1\otimes\mathcal{A}_2$,
$$\int_{B_{1,2}}Q\left(\omega,B_3\right)\space P_{X_1,X_2}\left(d\omega\right)=P\left(\left(X_1,X_2\right)\in B_{1,2},X_3\in B_3\right)$$
Fix $B_3\in\mathcal{A}_3$. First assume that $B_{1,2}$ is a rectangle: $B_{1,2}=B_1\times B_2$ for some $B_1\in\mathcal{A}_1,B_2\in\mathcal{A}_2$. Then
$$\begin{array}{lcl}
\int_{B_{1,2}}Q\left(\omega,B_3\right)\space P_{X_1,X_2}\left(d\omega\right) & = & \int_{B_1}\int_{B_2}Q\left(\left(\omega_1,\omega_2\right),B_3\right)\space P_{X_2}\left(d\omega_2\right)P_{X_1}\left(d\omega_1\right) \
& = & \int_{B_1}\int_{B_2}Q_{\omega_1}\left(\omega_2,B_3\right)\space P_{X_2}\left(d\omega_2\right)P_{X_1}\left(d\omega_1\right) \
& = & \int_{B_1}P_{\omega_1}\left(X_2\in B_2,X_3\in B_3\right)P_{X_1}\left(d\omega_1\right) \
& = & P\left(X_1\in B_1, X_2\in B_2, X_3\in B_3\right) \
& = & P\left(\left(X_1,X_2\right)\in B_{1,2}, X_3\in B_3\right)
\end{array}$$
where the first equation is by Tonelli's theorem, the second is by the definition of $Q_{\omega_1}$, the third is by the assumption that $Q_{\omega_1}$ is a conditional distribution and the fourth is by the definition of $P_*$.
Since these rectangles form a generating $\pi$-system for $\mathcal{A}_1\otimes\mathcal{A}_2$, we can extend the result to all $B_{1,2}\in\mathcal{A}_1\otimes\mathcal{A}_2$ using Dynkin's $\pi$-$\lambda$ theorem.
Since $f$ is non-negative and $\left(\left(\mathcal{A}_1\otimes\mathcal{A}_2\right)\otimes\mathcal{A}_3/\mathfrak{B}\right)$-measurable, it remains to verify that for all $B_{1,2,3}\in\left(\mathcal{A}_1\otimes\mathcal{A}_2\right)\otimes\mathcal{A}_3$,
$$\int_{B_{1,2,3}}f\space d\left(P_{X_1,X_2}\otimes\nu\right)=P\left(\left(\left(X_1,X_2\right),X_3\right)\in B_{1,2,3}\right)$$
First assume that $B_{1,2,3}=\left(B_1\times B_2\right)\times B_3$ for some $B_i\in\mathcal{A}_i$, $i=1,2,3$. Then
$$
\begin{array}{lcl}
\int_{B_{1,2,3}}f\space d\left(P_{X_1,X_2}\otimes\nu\right) & = & \int_{B_1}\int_{B_2}\int_{B_3}f\left(\left(\omega_1,\omega_2\right),\omega_3\right)\space \nu\left(d\omega_3\right)\space P_{X_2}\left(d\omega_2\right)\space P_{X_1}\left(d\omega_1\right) \
& = & \int_{B_1}\int_{B_2}\int_{B_3} f_{\omega_1}\left(\omega_2,\omega_3\right)\space\nu\left(d\omega_1\right)\space P_{X_2}\left(d\omega_2\right)\space P_{X_1}\left(d\omega_1\right) \
& = & \int_{B_1} P_{\omega_1}\left(X_1\in B_1,X_2\in B_2\right)\space P_{X_1}\left(d\omega_1\right) \
& = & P\left(X_1\in B_1, X_2\in B_2, X_3\in B_3\right) \
& = & P\left(\left(\left(X_1,X_2\right),X_3\right)\in B_{1,2,3}\right)
\end{array}
$$
where the first equation is by Tonelli's theorem, the second equation is by the definition of $f_{\omega_1}$, the third equation is by the assumption that $f_{\omega_1}$ is a density and the fourth equation is by the definition of $P_{\omega_1}$.
Using Dynkin's $\pi$-$\lambda$ theorem we can extend the result to all $B_{1,2,3}\in\left(\mathcal{A}_1\otimes\mathcal{A}_2\right)\otimes\mathcal{A}_3$.