what is the value of $$\binom{n}{1}+\binom{n}{4}+\binom{n}{7}+\binom{n}{10}+\binom{n}{13}+\dots$$ in the form of number, cos, sin
attempts : I can calculate the value of $$\binom{n}{0}+\binom{n}{3}+\binom{n}{6}+\binom{n}{9}+\binom{n}{12}+\dots=\frac{1}{3}\left(2^n+2\cos \frac{n\pi}{3}\right)$$ by use primitive $3^\text{rd}$ root of the unity but this problem i cant solve it.