Let $(X,S,\mu)$ be a $\sigma$-finite measure space, and $g \in M(X,S)$ such that $gs \in L_1(\mu)$ for any simple function $s \in L_p(\mu)$, with $p \in (1, \infty)$. Suppose $A \geq 0$ exists such that $|\int gs \mu| \leq A \|s\|_p$ for any function $s$. Prove:
$g \in L_q$ with $\dfrac{1}{p} + \dfrac{1}{q}=1$ and $\|g\|_q\leq A$