How do I proof $\neg \neg p \rightarrow p$ in the following Hilbert system without the use of additional lemmas (derive purely syntactical)?
- $A \rightarrow (B \rightarrow C)$
- $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- $(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$
In Logic in action there is a proof for $p \rightarrow p$, which is easy to grasp (pdf-version of the textbook onchapter 2 page 23) and in this pdf file (page 12) there is a proof for the exact problem of this question, except that it uses additional lemmas and transformations.