Let $V=V_0\oplus V_1$ be a superspace, where its even subspace $V_0$ and odd subspace $V_1$ both are $k$-dimensional. Let $(e_1,\cdots,e_k|f_1,\cdots,f_k)$ be a basis of $V$.
Consider linear transformations $\varphi,\psi$ on $V$, such that $\varphi(V_0)\subseteq V_0, \varphi(V_1)\subseteq V_1$; $\psi(V_0)\subseteq V_1,\psi(V_1)\subseteq V_0$.
Suppose $\varphi$ is nilpotent and $\varphi\psi-\psi\varphi=\theta$, where $\theta(e_i)=f_i$ and $\theta(f_i)=-e_i$. Then is it true that ${rank}(\varphi_0)={rank}(\varphi_1)$? Here $\varphi_0$ denotes restricting on even subspace , i.e. $\varphi|_{V_0}$.
If $\varphi^2=0$, then we know $\varphi$ anti-commute with $\theta$. Then $\varphi_0\theta_1=-\theta_0\varphi_1$, clearly ${rank}(\varphi_0)={rank}(\varphi_1)$. Is this true in general, when $\varphi^n=0$ with arbitrary $n$?
Thanks!