TL;DR How to prove the eight congruences at the end of this post?
Remark. My number theory is rusty and I'm trying to prove the following observations.
Motivation: This result easily implies that $3^n$ does not divide $8^n+1$ for $n\geq 4$, for example, as shown in my suggested answer on the linked question.
Definition. $\mathbb v_p(a)$ = The $p$-adic order of number $a$ is the number of times $p$ divides $a$.
When I start observing congruence classes, it is easy for me to see the initial observations:
$$\begin{array}{} \mathbf v_3(2^n-1) =\begin{cases} \mathbf v_3(n) + 1, & n\text{ even}\\0, & n\text{ odd} \end{cases} \\ \mathbf v_3(2^n+1) =\begin{cases}0, & n\text{ even}\\ \mathbf v_3(n) + 1, & n\text{ odd} \end{cases} \end{array}$$
In other words, I've actually observed that:
$$\begin{array}{} \mathbb v_3(2^n-1)=\begin{cases} 0, & n\equiv1\pmod{2}\\ 1, & n\equiv2,4\pmod{6}\\ 2, & n\equiv6,12\pmod{18}\\ 3, & n\equiv18,36\pmod{54}\\ \dots\\ k, & n\equiv2\cdot3^{k-1},4\cdot 3^{k-1}\pmod{2\cdot 3^{k}}\\ \dots \end{cases} \\ \mathbb v_3(2^n+1)=\begin{cases} 0, & n\equiv0\pmod{2}\\ 1, & n\equiv1,5\pmod{6}\\ 2, & n\equiv3,15\pmod{18}\\ 3, & n\equiv9,45\pmod{54}\\ \dots\\ k, & n\equiv1\cdot3^{k-1},5\cdot 3^{k-1}\pmod{2\cdot 3^{k}}\\ \dots \end{cases} \end{array}$$
Where notice that when we realize $k-1 = \mathbf v_3(n)$, the initial observations follow.
My question is, how would we formally and rigorously prove these observations?
Below is a possible starting point for the rigorous proof:
It seems to me like a starting point would be to notice that by definition:
$\space\space\space\space$ 1) $k\le\mathbf v_3(2^n\mp1)$ $\iff$ $2^n \pm1\equiv 0\pmod{3^{k}}$
$\space\space\space\space$ 2) $\mathbf v_3(2^n\mp1)\le k$ $\iff$ ${2^n}\pm1\not\equiv 0\pmod{3^{k+1}}$
Where depending on "$\mp$" we have:
$\space\space\space\space$ a) $ n\equiv2\cdot 3^{k-1}\pmod{2\cdot 3^{k}}$ or $ n\equiv4\cdot3^{k-1}\pmod{2\cdot 3^{k}}$
$\space\space\space\space$ b) $ n\equiv1\cdot 3^{k-1}\pmod{2\cdot 3^{k}}$ or $n\equiv5\cdot3^{k-1}\pmod{2\cdot 3^{k}}$
Now we need to prove that:
a) implies the RHS of 1) and RHS of 2) for "$-$"
b) implies the RHS of 1) and RHS of 2) for "$+$"
After proving that, we would have the implications: LHS $\iff$ RHS.
Finally, LHS of 1) combined with LHS of 2) would imply the observations.
To state the implications:
We can use a corollary of Euler's Theorem to obtain the implications:
a) implies the RHS of 1) and RHS of 2) for "$-$":
$$\begin{array}{} n \equiv 2\cdot3^{k-1} \quad(\bmod 2\cdot3^{k}) &\implies 2^{n} \equiv 2^{2\cdot3^{k-1}} \quad(\bmod 3^{k+1}) \\ n \equiv 4\cdot3^{k-1} \quad(\bmod 2\cdot3^{k}) &\implies 2^{n} \equiv 2^{4\cdot3^{k-1}} \quad(\bmod 3^{k+1}) \end{array}$$
b) implies the RHS of 1) and RHS of 2) for "$+$":
$$\begin{array}{} n \equiv 1\cdot3^{k-1} \quad(\bmod 2\cdot3^{k}) &\implies 2^{n} \equiv 2^{1\cdot3^{k-1}} \quad(\bmod 3^{k+1}) \\ n \equiv 5\cdot3^{k-1} \quad(\bmod 2\cdot3^{k}) &\implies 2^{n} \equiv 2^{5\cdot3^{k-1}} \quad(\bmod 3^{k+1}) \end{array}$$
To finish the proof, we have to prove:
$$\begin{array}{} 2^{2\cdot3^{k-1}} \not\equiv +1\quad(\bmod 3^{k+1}) \\ 2^{4\cdot3^{k-1}} \not\equiv +1 \quad(\bmod 3^{k+1}) \end{array}$$
$$\begin{array}{} 2^{1\cdot3^{k-1}} \not\equiv -1 \quad(\bmod 3^{k+1}) \\ 2^{5\cdot3^{k-1}} \not\equiv -1 \quad(\bmod 3^{k+1}) \end{array}$$
$$\begin{array}{} 2^{2\cdot3^{k-1}} \equiv +1\quad(\bmod 3^{k}) \\ 2^{4\cdot3^{k-1}} \equiv +1 \quad(\bmod 3^{k}) \end{array}$$
$$\begin{array}{} 2^{1\cdot3^{k-1}} \equiv -1 \quad(\bmod 3^{k}) \\ 2^{5\cdot3^{k-1}} \equiv -1 \quad(\bmod 3^{k}) \end{array}$$
But I'm not sure how to prove these eight congruences.