1

Let

$$ D_n := \begin{vmatrix} \frac1{(n+1)!} & \cdots & \cdots & \frac1{1!} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \frac1{(2n+1)!}& \cdots & \cdots & \frac1{(n+1)!} \end{vmatrix} $$

Can one determine the value of this determinant or, at least, an equivalent of $D_n$ when $n \to +\infty$?

joaopa
  • 1,219
  • Try to use the Leibniz formula for determinants to determine the limit of $\mathrm{det}(D_n)$ as $n \to \infty$. – ChenIteratedIntegral Apr 14 '20 at 23:47
  • @cerocius. Did you try what you say? It looks awful. – joaopa Apr 14 '20 at 23:52
  • 1
    I think @cerocius solves the problem $\det (D_n) = \sum_{\sigma\in S_{n+1} } \text{sgn}(\sigma) \prod_{i=1}^{n+1} \frac{1}{(n + 1 + \sigma(i) - \sigma(j))!}$ $\leq$ $\frac{(n+1)!}{(n+1)! n! ...1!} \leq \frac{1}{n!}$ right? – Matheus Manzatto Apr 15 '20 at 04:04

1 Answers1

2

There is a simple explicit expression for this determinant. But the proof is not that simple. Here are the ideas:

I rewrite it has a Hankel determinant of order $n$, it just change up to a sign $(-1)^{n(n-1)/2}$ and a shift.

First consider the determinant:

$$D_n(x)=\begin{vmatrix} \frac1{1!}x&\cdots&\cdots&\frac1{n!}x^n\\ \vdots&&&\vdots\\ \vdots&&&\vdots\\ \frac1{n!}x^n&\cdots&\cdots&\frac1{(2n-1)!}x^{2n-1} \end{vmatrix}. $$

Then derive it $n^2$ times, it yields with some multiplicity, the triangular determinant: $$\begin{vmatrix} 0 & \dots & & 0 & 1\\ \vdots & & & 1 & x\\ \vdots & & & & \vdots\\ 0 & 1 & \dots & & \frac1{(n-2)!}x^{n-2}\\ 1 & x & \dots & \frac1{(n-2)!}x^{n-2} & \frac1{(n-1)!}x^{n-1}\\ \end{vmatrix}=(-1)^{n(n-1)/2}. $$

The multiplicity is the multidimensionnal ballot number from $(0,1,\dots,n-1)$ to $(n,n+1,\dots,2n-1)$: $$\frac{(n^2)!(n!!)^2}{(2n)!!}$$ where $n!!=\prod_{k=0}^{n-1}(k!)$. (Ref. in Nathanson, Additive Combinatorics)

So we deduce that $$D_n(x)=(-1)^{n(n-1)/2}\frac{(n^2)!(n!!)^2}{(2n)!!}\frac1{(n^2)!}x^{n^2}=(-1)^{n(n-1)/2}\frac{(n!!)^2}{(2n)!!}x^{n^2},$$

and finally $$D_n=(-1)^{n(n-1)/2}\frac{(n!!)^2}{(2n)!!}=(-1)^{n(n-1)/2}\prod_{i=0}^{n-1}\frac{i!}{(n+i)!},$$ and therefore: $$|D_n|\leq \frac1{(n!)^n}$$

I skipped some details and there may be simpler proofs, but you got the expression that I checked for $n=2,3$.