There is a simple explicit expression for this determinant. But the proof is not that simple. Here are the ideas:
I rewrite it has a Hankel determinant of order $n$, it just change up to a sign $(-1)^{n(n-1)/2}$ and a shift.
First consider the determinant:
$$D_n(x)=\begin{vmatrix}
\frac1{1!}x&\cdots&\cdots&\frac1{n!}x^n\\
\vdots&&&\vdots\\
\vdots&&&\vdots\\
\frac1{n!}x^n&\cdots&\cdots&\frac1{(2n-1)!}x^{2n-1}
\end{vmatrix}.
$$
Then derive it $n^2$ times, it yields with some multiplicity, the triangular determinant:
$$\begin{vmatrix}
0 & \dots & & 0 & 1\\
\vdots & & & 1 & x\\
\vdots & & & & \vdots\\
0 & 1 & \dots & & \frac1{(n-2)!}x^{n-2}\\
1 & x & \dots & \frac1{(n-2)!}x^{n-2} & \frac1{(n-1)!}x^{n-1}\\
\end{vmatrix}=(-1)^{n(n-1)/2}.
$$
The multiplicity is the multidimensionnal ballot number from $(0,1,\dots,n-1)$ to $(n,n+1,\dots,2n-1)$:
$$\frac{(n^2)!(n!!)^2}{(2n)!!}$$
where $n!!=\prod_{k=0}^{n-1}(k!)$. (Ref. in Nathanson, Additive Combinatorics)
So we deduce that
$$D_n(x)=(-1)^{n(n-1)/2}\frac{(n^2)!(n!!)^2}{(2n)!!}\frac1{(n^2)!}x^{n^2}=(-1)^{n(n-1)/2}\frac{(n!!)^2}{(2n)!!}x^{n^2},$$
and finally $$D_n=(-1)^{n(n-1)/2}\frac{(n!!)^2}{(2n)!!}=(-1)^{n(n-1)/2}\prod_{i=0}^{n-1}\frac{i!}{(n+i)!},$$
and therefore:
$$|D_n|\leq \frac1{(n!)^n}$$
I skipped some details and there may be simpler proofs, but you got the expression that I checked for $n=2,3$.