0

I know that this question has been posted already, but I saw that is possible to draw the triangle of the question inside of the russian triangle. Can someone help me to finish the question using this? Triangle of the question Russian triangle

I find a lot of angles and I got the equation $∠UFO+∠UFN=100°$, but I couldn't find the value of $∠UFN$

Tas
  • 515

1 Answers1

0

Let $OF\cap UE=\{D\}$ and $\measuredangle UFO=x$.

Thus, $\measuredangle DUF=95^{\circ}$ and since $$\frac{OD}{UD}\cdot\frac{UD}{FD}\cdot\frac{FD}{ED}\cdot\frac{ED}{OD}=1,$$ by law of sines we obtain: $$\frac{\sin65^{\circ}}{\sin20^{\circ}}\cdot\frac{\sin{x}}{\sin(95^{\circ}-x)}\cdot \frac{\sin5^{\circ}}{\sin80^{\circ}}\cdot \frac{\sin60^{\circ}}{\sin35^{\circ}}=1 $$ or $$\frac{\sin65^{\circ}\sin5^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}=\sin95^{\circ}\cot{x}-\cos95^{\circ}$$ or $$\frac{\sin65^{\circ}\sin5^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}-\sin5^{\circ}=\cos5^{\circ}\cot{x}$$ or $$\tan5^{\circ}\left(\frac{\sin65^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}-1\right)=\cot{x}.$$ We need to prove that: $$\tan5^{\circ}\left(\frac{\sin65^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}-1\right)=\tan15^{\circ}$$ or $$\frac{\sin65^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}-1=\frac{3-\tan^25^{\circ}}{1-3\tan^25^{\circ}}$$ or $$\frac{\sin65^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}=\frac{4-4\tan^25^{\circ}}{1-3\tan^25^{\circ}}$$ or $$\frac{\sin65^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}=\frac{8\cos10^{\circ}}{1+\cos10^{\circ}-3+3\cos10^{\circ}}$$ or $$\frac{\sin65^{\circ}\sin60^{\circ}}{\sin20^{\circ}\sin80^{\circ}\sin35^{\circ}}=\frac{2\cos10^{\circ}}{\cos10^{\circ}-\cos60^{\circ}}$$ or $$\frac{\cos25^{\circ}\sin60^{\circ}}{\sin20^{\circ}\cos10^{\circ}\sin35^{\circ}}=\frac{\cos10^{\circ}}{\sin25^{\circ}\sin35^{\circ}}$$ or $$\sin50^{\circ}\sin60^{\circ}=\sin20^{\circ}(1+\cos20^{\circ})$$ or $$\sin60^{\circ}\cos40^{\circ}-\cos60^{\circ}\sin40^{\circ}=\sin20^{\circ},$$ which is obvious.

  • Oh! Nice answer! But, how do you solve this trigonometric equation? I wrote $$\frac{2\cos35°-\sqrt2}{16}=\sin95°\cot x-\cos95°$$. How can I solve this? – Tas Apr 13 '20 at 17:37
  • @Tas If you can use a calculator, so just calculate $\arctan$. I am ready to show that $75^{\circ}$ is an unique root of the equation without calculator. – Michael Rozenberg Apr 13 '20 at 17:41
  • I want to see this without calculator. If you can, thank you! – Tas Apr 13 '20 at 18:02
  • @Tas I posted. Your second problem we can solve by the similar way. – Michael Rozenberg Apr 13 '20 at 19:58