How can I prove that:
$\dim(M_1\vec{\oplus}M_2\vec{\oplus}\ldots\vec{\oplus}M_n) = \dim(M_1) + \dim(M_2) + \ldots + \dim(M_m)$
Where $M_i\lt L,\forall i\in\{1,\ldots,n\}$, and $\vec{\oplus}$ is the direct sum.
How can I prove that:
$\dim(M_1\vec{\oplus}M_2\vec{\oplus}\ldots\vec{\oplus}M_n) = \dim(M_1) + \dim(M_2) + \ldots + \dim(M_m)$
Where $M_i\lt L,\forall i\in\{1,\ldots,n\}$, and $\vec{\oplus}$ is the direct sum.
Let $U_1$ and $U_2$ be subspaces of vector space $V$. We show first that $$ \dim(U_1 \oplus U_2) = \dim(U_1) + \dim(U_2) \; . $$ Let $(v_1, \ldots v_n)$ a basis of $U_1$ and $(w_1, \ldots, w_m)$ a basis of $U_2$. We can show that $(v_1, \ldots, v_n, w_1, \ldots, w_m)$ is a basis of $U_1 \oplus U_2$.
You have to check two things:
Finally, you can use induction to show the general case.