I am trying to solve the following optimization problem
$$\begin{array}{ll} \text{minimize} & \mathbf{x}^T \mathbf{A} \mathbf{x}\\ \text{subject to} & \left(\mathbf{x}-m\mathbf{1}\right)^T \left(\mathbf{x}-m\mathbf{1}\right) \le a\\ & \mathbf{1}^T \mathbf{x} = b\end{array}$$
where
$\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix.
$\mathbf{1}$ denotes the vector of all ones.
$a$, $b$ and $m$ are scalar positive values.
I have tried to apply KKT conditions but I am not able to find a closed-form solution. Is there any way to simplify this problem?