Find value of $$S=\prod_{k=0}^{2^{1999}}\left(4\sin^2\left(\frac{k\pi}{2^{2000}}\right)-3\right)$$
We have for $k=0$ the value as $-3$
and now for $k \ne 0$ $$S_1=\prod_{k=1}^{2^{1999}}\left(\frac{\sin\left(\frac{3k\pi}{2^{2000}}\right)}{\sin\left(\frac{k\pi}{2^{2000}}\right)}\right)$$
Letting $f(k)=\sin\left(\frac{k\pi}{2^{2000}}\right)$ we get:
$$S_1=\prod_{k=1}^{2^{1999}}\frac{f(3k)}{f(k)}$$
Lets consider numerator:
we have the product in Numerator with all arguments multiples of $3$ as:
$$N=f(3)f(6)f(9)\cdots f(2^{1999}-2)f(2^{1999}+1)\cdots f(3.2^{1999})$$
Where as in Denominator we have the product with arguments multiples of $3$ as:
$$D_0=f(3)f(6)f(9)\cdots f(2^{1999}-2) \tag{1}$$
Likewise wit arguments in denominator with reminder $1$ when divided by $3$ as:
$$D_1=f(1)f(4)f(7)\cdots f(2^{1999}-1)\tag{2}$$
Likewise wit arguments in denominator with reminder $2$ when divided by $3$ as:
$$D_2=f(2)f(5)f(8)\cdots f(2^{1999}) \tag{3}$$
So we have:
$$S_1=\frac{N}{D_0D_1D_2}=\frac{f(2^{1999}+1)f(2^{1999}+4)\cdots f(3.2^{1999})}{D_1D_2} \tag{4}$$
Now we know that: $$f(2^{1999}-k)=f(2^{1999}+k)$$
So from backwards we can write $$D_1=f(2^{1999}+1)f(2^{1999}+4)\cdots f(2^{2000}-1)$$
Likewise from backwards we can write $$D_2=f(2^{1999})f(2^{1999}+3)\cdots f(2^{2000}-2)$$
After cancelling terms of $D_1$ from numerator in $(4)$ we get:
$$S_1=\frac{f(2^{2000}+2)f(2^{2000}+5)\cdots f(3.2^{1999})}{f(2^{1999})f(2^{1999}+3)\cdots f(2^{2000}-2)}$$
I am stuck here?