This exercise is from a Complex Analysis course, more explicitly inside the "Laplce Transform" chapter:
Find a reduction for $$(H(t+3)-H(t-5))\cdot(\delta(t+2)+\delta(t-3)+\delta(t-9)),$$ where $H(t)$ is the Heaviside function: $$H(t-a)=\begin{cases}1,&t>a,\\0,&t<a,\end{cases}$$ and $\delta(t)$ is the Dirac function: $$\delta(t)=\lim_{\tau\to0}F_{\delta}(t),\quad F_{\delta}(t)=\begin{cases}1/\tau,&0\leq t<\tau\\0,&t>\tau.\end{cases}$$
I plotted the functions:
$H(t+3)-H(t-5)$:
$\delta(t+2)+\delta(t-3)+\delta(t-9)$:
Finally, the answer would be $(H(t+3)-H(t-5))\cdot(\delta(t+2)+\delta(t-3)+\delta(t-9))$:
As an expression:
$$ (H(t+3)-H(t-5))\cdot(\delta(t+2)+\delta(t-3)+\delta(t-9))= \begin{cases} 0,&x<-2,\\ 1/2,&-2\leq x<0,\\ 4/9,&0\leq x<3,\\ 1/9,&3\leq x<5,\\ 0,&x>5. \end{cases} $$
Is this right? What other method would you use to find the product?


