Why $M^{2}_{[0,T]} \subset P^{2}_{[0,T]}$, where:
$M^{2}_{[0,T]} = \{f: \Omega \times [0, T] \to \mathbb{R}^{d \times m}: f - product \ measurable, (\mathcal{F_{t}})\ adapted, \mathbb{E} \int_{0}^{T} ||f(s)||^{2}ds< \infty\}$
$P^{2}_{[0,T]} = \{f: \Omega \times [0, T] \to \mathbb{R}^{d \times m}: f - product \ measurable, (\mathcal{F_{t}})\ adapted, \mathbb{P}( \int_{0}^{T} ||f(s)||^{2}ds< \infty ) =1\} ? $
I can't see why probability one does not result in finite expected value.
Thank you!