let $n\ge 2$ integer, and $a_{i}\ge 0,i=1,2,\cdots,n$ such $a_{1}+a_{2}+\cdots+a_{n}=1$,show that
$$\sum_{i=1}^{n}\dfrac{a_{i}a_{i+1}}{1-(a_{i+1}-a_{i})^2}\le\dfrac{1}{2}$$ where $a_{n+1}=a_{1}$.
I want to put the denominator $1-(a_{i+1}-a_{i})^2\ge A$ then $$\sum_{i=1}^{n}\dfrac{a_{i}a_{i+1}}{1-(a_{i+1}-a_{i})^2}\le\dfrac{1}{A}\sum_{i}^{n}a_{i}a_{i+1}\le A\dfrac{1}{4A}\left(\sum_{i=1}^{n}a_{i}\right)^2=\dfrac{1}{4A}$$ if we find a best $A\ge \dfrac{1}{2}?$
where use well know inequality
$$(x_{1}+x_{2}+\cdot+x_{n})^2\ge 4(x_{1}x_{2}+x_{2}x_{3}+\cdots+x_{n}x_{1})$$