My solution begins by the same steps.
By C-S we obtain:
$$\sum_{cyc}\sqrt{3a+\frac{1}{b}}=\sqrt{\sum_{cyc}\left(3a+\frac{1}{b}+2\sqrt{\left(3a+\frac{1}{b}\right)\left(3b+\frac{1}{c}\right)}\right)}=$$
$$=\sqrt{\sum_{cyc}\left(3+\frac{1}{a}+2\sqrt{\left(a+2a+\frac{1}{b}\right)\left(\frac{1}{c}+2b+b\right)}\right)}\geq$$
$$\geq \sqrt{\sum_{cyc}\left(3+\frac{1}{a}+2\left(\sqrt{\frac{a}{c}}+2\sqrt{ab}+1\right)\right)}= \sqrt{\sum_{cyc}\left(5+\frac{1}{a}+2\sqrt{\frac{a}{c}}+4\sqrt{ab}\right)}.$$
Thus, it's enough to prove that:
$$\sum_{cyc}\left(\frac{1}{a}+2\sqrt{\frac{a}{c}}+4\sqrt{ab}\right)\geq21.$$
Now, we'll prove that for any positives $a$, $b$ and $c$ the following inequality holds.
$$\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+\frac{(4\sqrt2-3)(ab+ac+bc)}{a^2+b^2+c^2}\geq4\sqrt2.$$
Indeed, we need to prove that:
$$\sum_{cyc}a^2b\sum_{cyc}a^2+(4\sqrt2-3)\sum_{cyc}a^2b^2c\geq4\sqrt2\sum_{cyc}a^3bc$$ or
$$\sum_{cyc}(a^4b+a^3c^2-4\sqrt2a^3bc+(4\sqrt2-2)a^2b^2c)\geq0$$ or
$$\sum_{cyc}b(a-b)^2(a-\sqrt2c)^2\geq0,$$ which ends a proof of the lemma.
Thus, since $\sum\limits_{cyc}(a^2-ab)\geq0,$ we obtain:
$$\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+\frac{2.5(ab+ac+bc)}{a^2+b^2+c^2}-5.5\geq$$
$$\geq\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+\frac{(4\sqrt2-3)(ab+ac+bc)}{a^2+b^2+c^2}-4\sqrt2\geq0.$$
Thus, it's enough to prove that:
$$\sum_{cyc}\left(\frac{1}{a}+2\left(\frac{5.5}{3}-\frac{2.5\sqrt{ab}}{3}\right)+4\sqrt{ab}\right)\geq21$$ or
$$\sum_{cyc}\left(\frac{3}{a}+7\sqrt{ab}-10\right)\geq0$$ or
$$\sum_{cyc}\left(\frac{3}{a^2}+7ab-10\right)\geq0,$$ where $a$, $b$ and $c$ are positives such that $a^2+b^2+c^2=3.$
Now, let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$.
Thus, $3u^2-2v^2=1$ and we need to prove that:
$$\frac{9v^4-6uw^3}{w^6}\geq10(3u^2-2v^2)-7v^2$$ and since the condition does not depend on $w^3$, we need to prove that $f(w^3)\geq0,$
where $f$ is a concave function (the coefficient before $w^6$ is negative).
But the concave function gets a minimal value for an extreme value $w^3$,
which happens in the following cases.
$w^3\rightarrow0^+$. In this case our inequality is obvious;
Two variables are equal.
Let $b=c$.
Thus, after homogenization we can assume $b=c=1$ and it's enough to prove that:
$$\frac{(a^2b^2+a^2c^2+b^2c^2)(a^2+b^2+c^2)}{a^2b^2c^2}+\frac{21(ab+ac+bc)}{a^2+b^2+c^2}\geq30$$ or
$$\frac{(2a^2+1)(a^2+2)}{a^2}+\frac{21(2a+1)}{a^2+2}\geq30$$ or
$$(a-1)^2(2a^4+4a^3-15a^2+8a+4)\geq0,$$ which is true because by AM-GM
$$2a^4+4a^3-15a^2+8a+4\geq4\sqrt[4]{2a^4\cdot4a^3\cdot 8a\cdot4}-15a^2=a^2>0$$ and we are done!