Can I use this problem:
Let $X$ be a Banach space and $T \in \mathcal{L}(X, X)$ with $\|T\| < 1.$ Define $T^0 = I.$ (a) Use the completeness of $\mathcal{L}(X, X)$ to show that $\sum_{n=1}^{\infty} T^n$ converges in $\mathcal{L}(X, X).$ (b) Show that $(I - T)^{-1} = \sum_{n=1}^\infty{}T^n.$
To prove this one
Let $X$ be a Banach space and $T,S \in \mathcal{L(X)}.$ Suppose that $T$ is invertible and that $\|T-S\| < \|T^{-1}\|^{-1}.$ Prove that $S$ is invertible.
If so, How?