Let $X \subset \mathbb{R}^{n}$ be closed and $f$ be a continuous real valued function on $X$.
Consider now the sets \begin{align} S_{<} = \{ x \in X : f(x) < 0 \}, && S_{\le} = \{ x \in X : f(x) \le 0 \}. \end{align}
Is it generally true that if $ S_{<} \ne \emptyset$, then $\overline{S_{<}} = S_{\le}$?