Yes, it is true.
For two independent r.v. $X_1 \sim Gamma(\lambda_1, \beta)$ and $X_2 \sim Gamma(\lambda_2, \beta)$,
$$
X_1 + X_2 \sim Gamma(\lambda_1 + \lambda_2, \beta).
$$
Proof. Let $X_i\sim Gamma(\lambda_i, \beta)$, $i = 1, 2$, with p.d.f.
$$
f_{X_i} = \frac{1}{\Gamma(\lambda_i)\beta^{\lambda_i}}x^{\lambda_i-1}e^{-\frac{x}{\beta}}.
$$
$$
\begin{aligned}
f_{X_1+X_2}(x) &= \int_{-\infty}^{+\infty}f_{X_1}(y)f_{X_2}(x-y)dy = \\
&= |f_{X_1}(y) \ne 0, \text{ for }y > 0, \text{ and }f_{X_2}(x-y) \ne 0, \text{ for }y < x| = \\
&= \int_{0}^{x}f_{X_1}(y)f_{X_2}(x-y)dy = \\
&= \int_{0}^{x}\frac{1}{\Gamma(\lambda_1)\beta^{\lambda_1}}y^{\lambda_1-1}e^{-\frac{y}{\beta}}\frac{1}{\Gamma(\lambda_2)\beta^{\lambda_2}}(x-y)^{\lambda_2-1}e^{-\frac{x-y}{\beta}}dy = \\
&= \frac{1}{\Gamma(\lambda_1)\Gamma(\lambda_2)\beta^{\lambda_1+\lambda_2}}e^{-\frac{x}{\beta}}\int_{0}^{x}y^{\lambda_1-1}(x-y)^{\lambda_2-1}dy = \\
&= |y = xt \Leftrightarrow dy = xdt| = \\
&= \frac{1}{\Gamma(\lambda_1)\Gamma(\lambda_2)\beta^{\lambda_1+\lambda_2}}x^{\lambda_1 + \lambda_2 - 1}e^{-\frac{x}{\beta}}\int_{0}^{1}t^{\lambda_1-1}(1-t)^{\lambda_2-1}dt = \\
&= \left|\frac{1}{\Gamma(\lambda_1)\Gamma(\lambda_2)}\int_{0}^{1}t^{\lambda_1-1}(1-t)^{\lambda_2-1}dy = \frac{1}{\Gamma(\lambda_1)\Gamma(\lambda_2)} Beta(\lambda_1, \lambda_2) = \frac{1}{\Gamma(\lambda_1+\lambda_2)}\right| = \\
&= \frac{1}{\Gamma(\lambda_1+\lambda_2)\beta^{\lambda_1+\lambda_2}}x^{\lambda_1 + \lambda_2 - 1}e^{-\frac{x}{\beta}},
\end{aligned}
$$
which is a p.d.f. of $Gamma(\lambda_1 + \lambda_2, \beta)$.
If $X_1, X_2$ are i.i.d. ($\lambda_1 = \lambda_2 = \lambda$), then
$$
X_1 + X_2 \sim Gamma(2\lambda, \beta).
$$
You can extend this for $n$ i.i.d. $Gamma(\lambda, \beta)$ random variables.