For $x=y=0$ the inequality (or should I say equality) holds. Now we are going to prove it also holds for at least one non - zero $x$ or $y$.
$a^{p} \geq a$ for $0<p<1$ and $0 \leq a \leq 1$ where equality happens if $a$ is either $0$ or $1$.
$\left( \frac{|x|}{|x|+|y|} \right)^{p} \geq \frac{|x|}{|x|+|y|}$
$\left( \frac{|y|}{|x|+|y|} \right)^{p} \geq \frac{|y|}{|x|+|y|}$
Adding the two inequalities, we obtain
$\left( \frac{|x|}{|x|+|y|} \right)^{p} + \left( \frac{|y|}{|x|+|y|} \right)^{p} \geq 1$
$|x|^{p} + |y|^{p} \geq (|x|+|y|)^{p}$
Combine with triangle inequality $|x|+|y| \geq |x+y|$ to obtain
$|x|^{p} + |y|^{p} \geq |x+y|^{p}$, equality happens if any of $x,y$ is zero.