Suppose I have the following bi-vector of $Cl_{3,1}(\mathbb{R})$:
$$ \begin{align} \mathbf{b}&=(E_x+IB_x)\gamma_0\gamma_1+(E_y+I B_y)\gamma_0\gamma_2+(E_z+IB_z)\gamma_0\gamma_2 \end{align} $$
where $I=\gamma_0\gamma_1\gamma_2\gamma_3$, and where I define its complex conjugate as:
$$ \begin{align} \mathbf{b}^*&=(E_x-IB_x)\gamma_0\gamma_1+(E_y-I B_y)\gamma_0\gamma_2+(E_z-IB_z)\gamma_0\gamma_2 \end{align} $$
What is the invariance group of $f$ such that $f(\mathbf{b})=f(T\mathbf{b})$, and where $T$ is a linear transformation.
$$ f(\mathbf{b})=\mathbf{b}^*\mathbf{b}\implies f(T\mathbf{b})=(T\mathbf{b})^*(T\mathbf{b}) $$
For reference:
$$ \mathbf{b}^*\mathbf{b}=E_x^2+E_y^2+E_z^2+B_x^2+B_y^2+B_z^2+\det \pmatrix{\gamma_0\gamma_1 & \gamma_0\gamma_2&\gamma_0\gamma_3\\E_x&E_y&E_z\\B_x&B_y&B_z} $$
$T$ must maintain $E_x^2+E_y^2+E_z^2+B_x^2+B_y^2+B_z^2$, as $U(3)$ would, but must also make the cross product between the real part of $\mathbf{b}$ and it's imaginary part also invariant. In this sense, $\mathbf{b}^*\mathbf{b}$ is reminiscent of complex numbers but with the added structure of the determinant.