Let $V$ be an $\mathbb R$-vector space. Let $A$ be an $\mathbb R$-subspace of $V^2$ that is $\mathbb R$-isomorphic to $V$. Then $A$ could be $V \times 0$ or $0 \times V$. Is every other $A$ given by $\{(v,b_Av)|v \in V\}$ for some unique $b_A \in \mathbb R \setminus 0$?
Context:
Complexification of a map under nonstandard complexifications of vector spaces