More generally let $(X, A)$ be a pair and consider the triple
$$ (0 \times I) \cup (I \times A) \subset (\partial I \times X) \cup (I \times A) \subset I \times X. $$
One has from the associated exact sequence a boundary homomorphism
$$ \partial_n : h_n(I \times X, (\partial I \times X) \cup (I \times A)) \longrightarrow h_{n-1}((\partial I \times X) \cup (I \times A), (0 \times I) \cup (I \times A)) $$
which is in fact an isomorphism: the inclusion $(0 \times X) \cup (I \times A) \hookrightarrow I \times X$ has a retract $I \times X \to (0 \times X) \cup (I \times A)$ given by $(t, x) \mapsto (0, x)$; it follows that $h_*(I \times X, (0 \times X) \cup (I \times A)) = 0$ and looking at the long exact sequence shows the claim.
Further, there is a canonical isomorphism $h_*((\partial I \times X) \cup (I \times A), (0 \times X) \cup (I \times A)) \stackrel{\sim}{\to} h_*(X, A)$. In fact by excision on the subset $0 \times X \subset (0 \times X) \cup (I \times A))$, one has an isomorphism
$$ \alpha : h_*((1 \times X) \cup (I \times A), I \times A) \stackrel{\sim}{\longrightarrow} h_*((\partial I \times X) \cup (I \times A), (0 \times X) \cup (I \times A)) $$
and further the inclusion $(1 \times X, 1 \times A) \hookrightarrow ((1 \times X) \cup (I \times A), I \times A)$ has a retract defined by the restriction of $(t, x) \mapsto (1, x)$, and hence induces an isomorphism
$$ \beta : h_*(X, A) \stackrel{\sim}{\longrightarrow} h_*(1 \times X, 1 \times A) \stackrel{\sim}{\longrightarrow} h_*((1 \times X) \cup (I \times A), I \times A). $$
Finally composing $\beta$, $\alpha$, and $\partial_{n+1}^{-1}$ gives an isomorphism
$$ \sigma : h_n(X, A) \stackrel{\sim}{\longrightarrow} h_{n+1}(I \times X, (\partial I \times X) \cup (I \times A)). $$
In the case $A$ is a point $x_0 \in X$ and $(X, x_0)$ is well-pointed, one gets the desired isomorphism
$$ \tilde{h}_n(X) \stackrel{\sim}{\longrightarrow} h_{n+1}(I \times X, (\partial I \times X) \cup (I \times x_0)) \stackrel{\sim}{\longrightarrow} \tilde{h}_{n+1}((I \times X)/((\partial I \times X) \cup (I \times x_0)). $$