Let $X\in{}\mathbb{R}^N$, with independent sub-gaussian coordinates s.t. $E[X_i^2]=1, E[X_i]=0$.
W.T.S:
$\text{Var}(\|X\|_2)\le{C'K^4}$ with $C'>0$ and $K:=\max_{1\le{i\le{N}}}{\|X_i\|_{\psi^2}}$,
I don't know where to start, ive tried using various properties of sub-gaussian r.v. with no luck, any hints?
The concentration of the norm theorem:
Let $X\in{}\mathbb{R}^N$, with independent sub-gaussian coordinates s.t. $E[X_i^2]=1$. $$\|\|X\|_2-\sqrt{n}\|_{\Psi^2}\le{CK^2},\space{}C>0,\space{}K:=\max_{1\le{i\le{N}}}{\|X_i\|_{\psi^2}}$$
$$$$ $$$$
$$$$
P.S. I have shown the fact that:
$$\sqrt{n}-CK^2\le{}\mathbb{E}[\|X\|_2]\le{}\sqrt{n}+CK^2$$
I essentially used the theorem, found a lower bound of the subgaussian norm of $\|X\|_2-\sqrt{n}$ with the Lp norm, set p to 1. and used Jensens inequality since $f(x)=|x|$ is a convex function.
I am using the following book and believe the question is similar to ex3.1.4: https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf