If $f$ is twice differentiable real function on $(0,∞)$ and $a,b,c $ are supremum of $|f|,|f'|$ and $|f''|$ on $(0,∞)$ then
$a)$. $ b^{2} ≤ ac$
$b)$ $ b^{2} < ac$
$c)$. $ b^{2} = ac$
$d)$. $ b^{2} > ac$
I took $f(x) = \tan^{-1} (x)$, then discarded $c,d$. I am confused in between $a$ and $b$. Any hint$?$