$\!\bmod 11\!:\, $ he is solving $\,x^{\large 103}\equiv 4\ $ by using little Fermat to reduce the exponent from $\,103\,$ to $\,3.\,$ Note $\,0^{\large 103}\!\not\equiv 4,\,$ so $\,x\not\equiv 0,\,$ so little Fermat $\,\Rightarrow\, x^{\large 10}\!\equiv 1.\,$ Raising this to power $10$ using Congruence Rules
$$\begin{align} x^{\large 10}&\equiv 1\ \ \ \ \ {\rm by\ little\ Fermat\ and}\ x\not\equiv 0\\[.3em]
\smash{\overset{(\ \ )^{\Large 10}}\Longrightarrow}\ \ (x^{\large 10})^{\large 10}&\equiv 1^{\large 10}\ \ {\rm by\ the\ Congruence\ Power\ Rule}\\[.3em]
\Longrightarrow\ \ \ \ \ \ x^{\large 100}&\equiv 1\ \ \ \ \ {\rm by\ exponent\ laws}\\[.4em]
\smash{\overset{\large \times\ x^{\Large 3}}\Longrightarrow}\ \ \ \ \ \ \color{#c00}{x^{\large 103}}&\equiv \color{#c00}{x^{\large 3}}\ \ \ {\rm by\ the\ Congruence\ Product\ Rule}
\end{align}$$
Written more concisely: $\,\ x^{\large 103}\equiv x^{\large 3}(x^{\large 10})^{\large 10}\equiv x^{\large 3}(1^{\large 10})\equiv x^{\large 3}\ $
Thus from $\ \color{#c00}{x^{\large 103}\equiv x^{\large 3}}\ $ we infer $\ \color{#c00}{x^{\large 103}}\equiv 4\iff \color{#c00}{x^{\large 3}}\equiv 4\,\pmod{\!11}$
Remark $ $ The same idea works generally, i.e. if we know that $\, x^{\large n}\equiv 1\,$ then all exponents on $\,x\,$ can be reduced $\!\bmod n,\,$ i.e. $\,x^{\large k}\equiv x^{\large k\bmod n},\,$ see modular order reduction.
p. 69yet you do not talk of any book. Could add a reference to the book? Also, have a look at mathjax for your mathematical expressions. – Alain Remillard Feb 03 '20 at 15:16