I am looking for solution verification. I am trying to grasp the very very basic idea of modular arithmetic. I am sure there are lot of other ways to go about it assuming I did these problems correctly.
$3k \equiv 7 \pmod{13}$ since we are in $\mod(13)$ we only look at the values $k=0,...,12$
so $$3k -7 \equiv 0 \pmod{13}$$
$(k = 1) \space 3 - 7 =-4$
$(k = 2) \space 6 - 7 = -1$
$(k = 3) \space 9 - 7 = 2$
$(k = 4) \space 12 - 7 = 5$
$(k = 5) \space 15 - 7 = 8$
$(k = 6) \space 18 - 7 = 11$
$(k = 7) \space 21 - 7 = 14$
$(k = 8) \space 24 - 7 = 17$
$(k = 9) \space 27 - 7 = 20$
$(k = 10) \space 30 - 7 = 23$
$(k = 11) \space 33 - 7 = 26$
Now listing multiples of $13$:
13
26
39
we get $26$ when $k = 11$ so the answer is $11$
$4k \equiv 2 (\mod 7)$
$4k - 2 \equiv \space 0 (\mod 7)$
we look at the values from $0,1,2....6$
$(k = 1) 4 - 2 = 2$
$(k = 2) 8 - 2 =6$
$(k = 3) 12 - 2 = 10$
$(k = 4) 16 - 2 = 14$
$(k = 5) 20 - 2 =18$
$(k = 6) 24 - 2 = 22$
listing multiples of $7: 7, 14 , 21 , 28$
we get $14$ when when $k = 4$ so the solution to the congruence equation is $k = 4$