Let $(\Omega,(\mathcal{F}_t)_{t≥0}, \mathcal{P})$ be a filtered probability space. Let $(B_1(t), B_2(t))_{t≥0}$ be a two-dimensional Brownian motion. Let $ θ\in \mathbb{R}$ and let $$ X_t^θ = B_1(t) \cos θ − B_2(t) \sin θ $$
Why $X_t^θ$ is a martingale ?