This question is based on Every natural number is covered by consecutive numbers that sum to a prime power.
Let $T(n) = \frac{n(n+1)}2$ be the $n$th triangular number, and let $p^j$ denote a prime power.
By checking $1 \leq n \leq 10\,000$, it appears empirically that after fixing $k$, $T(n)-T(k)$ is a prime power only for a finite number of values $n$:$$ \begin{align*} T(n) - T(0) = p^j &\Longrightarrow n \in \{ 2 \}\\ T(n) - T(1) = p^j &\Longrightarrow n \in \{ 2,3,4,7 \}\\ T(n) - T(2) = p^j &\Longrightarrow n \in \{ 3,4,7 \}\\ T(n) - T(3) = p^j &\Longrightarrow n \in \{ 4,5,10 \}\\ T(n) - T(4) = p^j &\Longrightarrow n \in \{ 5,6,13,22 \}\\ T(n) - T(5) = p^j &\Longrightarrow n \in \{ 7,16 \}\\ T(n) - T(6) = p^j &\Longrightarrow n \in \{ 7,19 \}\\ T(n) - T(7) = p^j &\Longrightarrow n \in \{ 8,9,10,17 \}\\ T(n) - T(8) = p^j &\Longrightarrow n \in \{ 9,10,25 \}\\ T(n) - T(9) = p^j &\Longrightarrow n \in \{ 28 \}. \end{align*} $$
Is it easy to prove that each of these sets is finite? If so, is there a way to compute an upper bound for the largest number that can appear in one of the sets, or otherwise compute the size of each set?