Theorem: $AB$ and $BA$ have the same eigenvalues, where $A_{n\times n}$ and $B_{n\times n}$, and $\alpha\neq0$
Step 1: Let $v$ be an eigenvector corresponding to the eigenvalue $\alpha\neq0$ of $AB$. $ABv=\alpha v$ and by definition $v\neq0$. We are looking for a vector $w$ such that $BAw=\alpha w$
2. If we apply $B$ to both sides of $ABv=\alpha v$, we have $BABv=B\alpha v=\alpha Bv$. Then, $BA(Bv)=\alpha (Bv)$ and $w=Bv$. If we can show that $Bv\neq0$ then $w$ is an eigenvector, $\alpha\neq0$ is an eigenvalue of $BA$, and $AB$ and $BA$ have the same eigenvalues when $\alpha\neq0$.
3. $\alpha\neq0$ and take $Bv=0$. If $Bv=0$, $ABv=0=\alpha v$. As $v\neq0$, $\alpha=0$, however this is a contradiction and therefore $Bv\neq0$ and $w$ is an eigenvector. As $w$ is an eigenvector, $\alpha\neq0$ is an eigenvalue of $BA$, and $AB$ and $BA$ have the same eigenvalues when $\alpha\neq0$.
Q.E.D.
- https://math.stackexchange.com/questions/124888/are-the-eigenvalues-of-ab-equal-to-the-eigenvalues-of-ba-citation-needed
- https://math.stackexchange.com/questions/402281/eigenvalues-and-eigenvectors-of-ab-and-ba-proof
- https://math.stackexchange.com/questions/1173614/eigenvalues-of-ab-and-ba-qquad (itself marked as duplicate)
- https://math.stackexchange.com/questions/1648096/a-variation-on-the-ab-vs-ba-nonzero-eigenvalues-question
– Hanno Jan 02 '20 at 19:52- https://math.stackexchange.com/questions/2029376/do-ab-and-ba-have-the-same-eigenvalues (duplicate)
- https://math.stackexchange.com/questions/2061035/eigenvalues-of-ab-and-ba-the-same
- https://math.stackexchange.com/questions/2494974/prove-that-if-%ce%bb-is-an-eigenvalue-of-ab-then-%ce%bb-is-also-an-eigenvalue-of-ba
- https://math.stackexchange.com/questions/2806072/does-ab-and-ba-have-the-same-number-of-each-non-zero-eigenvalue (duplicate)
- https://math.stackexchange.com/questions/3313167/eigenvalues-of-ab-vs-eigenvalues-of-ba-incl-infinite-dimensional-case
– Hanno Jan 02 '20 at 19:53