If we factor the additive group $\mathbb R$ by $\mathbb Q$ we will have the quotient group $\mathbb R / \mathbb Q$ where $\mathbb Q$ is the identity element. And I try to find non-trivial examples of irrational numbers which are in the same coset (i.e $x - y \in \mathbb Q$). Yet I am not able to come with one.
What i mean when i say "trivial" is like $x = y$ or $x = \sqrt{2}$ and $y = \sqrt{2} - 2$.