-3

Is $ \mathbb{Q} \times \mathbb{Q[i]}$ an integral domain ?

My attempt : I know that $ \mathbb{Q} \times \mathbb{Q}$ is not integral domain take $(0,1) \times (1,0) =( 0,0)$

But im confused in $ \mathbb{Q} \times \mathbb{Q[i]}$

TheHolyJoker
  • 2,068
  • 1
  • 10
  • 25
jasmine
  • 15,021

2 Answers2

4

The same example works. Here's another $(0, i) \times (1, 0) = (0, 0)$.

badjohn
  • 8,854
2

You may use same argument to show $\mathbb{Q}\times \mathbb{Q}[i]$ is not an integral domain as $(q,0)\times (0,q')=(0,0),$ for any two non zero rational number $q,q'.$

Infact if $R$ and $R'$ are fields even, $R\times R'$ can never become integral domain.

MANI
  • 2,005
  • 1
  • 13
  • 23