The first thing we need to do is construct the unit tangent vector field $T$ to the integral curves of $X$ from $X$ itself; now the magnitude of $X$ is
$\vert X \vert = \langle X, X \rangle^{1/2}; \tag 1$
thus normalizing $X$ yields
$T = \dfrac{X}{\vert X \vert} = \dfrac{X}{\langle X, X \rangle^{1/2}} = \langle X, X \rangle^{-1/2}X, \tag 2$
where $T$ is the unit tangent field to the integral curves of $X$;
$\nabla_{X/\vert X \vert} \left(\dfrac{X}{\vert X \vert} \right) = \nabla_{\langle X, X \rangle^{-1/2}X} \left( \langle X, X \rangle^{-1/2}X \right) = \langle X, X \rangle^{-1/2}\nabla_X \left( \langle X, X \rangle^{-1/2}X \right); \tag 3$
$\nabla_X \left( \langle X, X \rangle^{-1/2}X \right) = \left ( \nabla_X\langle X, X \rangle^{-1/2} \right ) X + \langle X, X \rangle^{-1/2} \nabla_X X; \tag 4$
$ \nabla_X\langle X, X \rangle^{-1/2} = -\dfrac{1}{2}\langle X, X \rangle^{-3/2} \nabla_X \langle X, X \rangle = -\dfrac{1}{2}\langle X, X \rangle^{-3/2} \left ( \langle \nabla_X X, X \rangle + \langle X, \nabla_X X \rangle \right )$
$= -\dfrac{1}{2}\langle X, X \rangle^{-3/2} \left (2 \langle X, \nabla_X X \rangle \right ) = -\langle X, X \rangle^{-3/2} \langle X, \nabla_X X \rangle; \tag 5$
$\nabla_X \left( \langle X, X \rangle^{-1/2}X \right) = -\langle X, X \rangle^{-3/2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1/2} \nabla_X X; \tag 6$
$\nabla_{X/\vert X \vert} \left(\dfrac{X}{\vert X \vert} \right) = \langle X, X \rangle^{-1/2}\nabla_X \left( \langle X, X \rangle^{-1/2}X \right)$
$= -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X; \tag 7$
we confirm that this vector is normal to $X$:
$\left \langle \nabla_{X/\vert X \vert} \left(\dfrac{X}{\vert X \vert} \right), X \right \rangle = \langle -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X, X \rangle$
$= \langle -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X, X \rangle + \langle \langle X, X \rangle^{-1} \nabla_X X, X \rangle$
$= -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle \langle X, X \rangle + \langle X, X \rangle^{-1} \langle \nabla_X X, X \rangle$
$= -\langle X, X \rangle^{-1} \langle X, \nabla_X X \rangle + \langle X, X \rangle^{-1} \langle \nabla_X X, X \rangle = 0; \tag 8$
(7) is thus normal to $X/\vert X \vert$ as well; thus we have $N$, the unit normal to our integral curves, expressible as
$N = \dfrac{ -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X }{\vert -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X \vert }; \tag 9$
now
$\vert -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X \vert^2$
$= \langle -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X, -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X \rangle$
$+ 2 \langle -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X, \langle X, X \rangle^{-1} \nabla_X X \rangle + \langle \langle X, X \rangle^{-1} \nabla_X X, \langle X, X \rangle^{-1} \nabla_X X \rangle$
$= \langle X, X \rangle^{-4} \langle X, \nabla_X X \rangle^2 \langle X, X \rangle - 2 \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2 + \langle X, X \rangle^{-2} \langle \nabla_X X, \nabla_X X \rangle$
$= \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2 - 2 \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2 + \langle X, X \rangle^{-2} \langle \nabla_X X, \nabla_X X \rangle$
$= \langle X, X \rangle^{-2} \langle \nabla_X X, \nabla_X X \rangle - \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2; \tag{10}$
thus,
$\vert -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X \vert$
$= \sqrt{ \langle X, X \rangle^{-2} \langle \nabla_X X, \nabla_X X \rangle - \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2}$
$= (\langle X, X \rangle^{-2} \langle \nabla_X X, \nabla_X X \rangle - \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2)^{1/2}; \tag{11}$
this quantity (11), being the magnitude of $\nabla_{X / \vert X \vert} (X / \vert X \vert)$, is in fact the curvature of the integral curves of $X$, so we write
$\kappa = (\langle X, X \rangle^{-2} \langle \nabla_X X, \nabla_X X \rangle - \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2)^{1/2}, \tag{12}$
which leads to
$\kappa^2 = \langle X, X \rangle^{-2} \langle \nabla_X X, \nabla_X X \rangle - \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2$
$= \langle X, X \rangle^{-3} \langle \nabla_X X, \nabla_X X \rangle\langle X, X \rangle - \langle X, X \rangle^{-3} \langle X, \nabla_X X \rangle^2$
$= \dfrac{ \langle \nabla_X X, \nabla_X X \rangle\langle X, X \rangle - \langle X, \nabla_X X \rangle^2}{\langle X, X \rangle^3} = \dfrac{\vert \nabla_X X \vert^2 \vert X \vert^2 - \langle X, \nabla_X X \rangle^2}{\vert X \vert^6}, \tag{13}$
and returning once again to
$\kappa = \dfrac{(\vert \nabla_X X \vert^2 \vert X \vert^2 - \langle X, \nabla_X X \rangle^2)^{1/2}}{\vert X \vert^3}, \tag{14}$
if $\alpha(t)$ is an integral curve of $X$, that is, if $\alpha(t)$ satisfies
$\dot \alpha(t) = X(\alpha(t)), \tag{15}$
then
$\ddot \alpha(t) = \nabla_X X, \tag{16}$
whence
$\kappa = \dfrac{\vert \ddot \alpha(t) \vert^2 \vert \dot \alpha(t) \vert^2 - \langle \dot \alpha(t), \ddot \alpha(t) \rangle^2}{\vert \dot \alpha(t) \vert^3}, \tag{17}$
which is the usual formula for $\kappa$ in terms of the derivatives of a (not necessarily arc-length) parametrized curve $\alpha(t)$. (14) expresses this quantity in terms of the vector field $X$, and hence applies to all the integral curves of this vector field. We also observe that (13) ensures
$\kappa^2 > 0, \tag{18}$
so that $\kappa$ is well-defined (i.e., real) from (14), (18); this follows from the Cauchy-Schwarz inequality applied to the numerator of (13), that is, to
$\vert \nabla_X X \vert^2 \vert X \vert^2 - \langle X, \nabla_X X \rangle^2, \tag{19}$
for indeed we have
$\langle X, \nabla_X X \rangle^2 \le \vert \nabla_X X \vert^2 \vert X \vert^2. \tag{20}$
We have now derived expressions for $T$, $N$ and $\kappa$ in terms of the vector field $X$; we pause to note that $T$ and $N$ are in this case vector fields themselves, and $\kappa$ a scalar field, on any open set $U$ where $X$ is defined; new fields from old.
Having built $\kappa$, $T$ and $N$ from $X$, we proceed to calculate
$B = T \times N; \tag{21}$
by means of (2) and (9) we write
$T \times N = \dfrac{X}{\vert X \vert} \times \dfrac{ -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X }{\vert -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X \vert }$
$= \dfrac{X \times (-\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X)}{\vert X \vert\vert -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X \vert}; \tag{22}$
we evalutate the numerator:
$X \times (-\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X)$
$= -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X \times X + \langle X, X \rangle^{-1} X \times \nabla_X X = \langle X, X \rangle^{-1} X \times \nabla_X X, \tag{23}$
since $X \times X = 0$; thus (22) becomes
$T \times N = \dfrac{\langle X, X \rangle^{-1} X \times \nabla_X X}{\vert X \vert\vert -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X \vert}; \tag{24}$
we multiply the numerator and denominator through by $\langle X, X \rangle > 0$ and obtain
$B = T \times N = \dfrac{ X \times \nabla_X X}{\vert X \vert \langle X, X \rangle \vert -\langle X, X \rangle^{-2} \langle X, \nabla_X X \rangle X + \langle X, X \rangle^{-1} \nabla_X X \vert}$
$= \dfrac{ X \times \nabla_X X}{\vert X \vert \vert - \langle X, X \rangle^{-1}\langle X, \nabla_X X \rangle X + \nabla_X X \vert} = \dfrac{ X \times \nabla_X X}{\vert X \vert \vert \nabla_X X - \langle X, X \rangle^{-1}\langle X, \nabla_X X \rangle X \vert}; \tag{25}$
Nota Bene: Whoops! Looks like I hit that old "Post" button a tad prematurely! So stay tuned, there is a bit more to come! End of Note.