Consider this proof of $\lim_{x\to{+\infty}} \frac{\ln(x)}{x} =0 $.
Using the simple substitution $x\mapsto x^n$ we have that $\forall n\in\mathbf{N}$ $$\lim_{x\to{+\infty}} \frac{\ln(x)}{x} = \lim_{x\to{+\infty}} \frac{n\cdot \ln(x)}{x^n}$$ and so we can write
$$\lim_{x\to{+\infty}} \frac{\ln(x)}{x} = \lim_{n\to{+\infty}} \lim_{x\to{+\infty}} \frac{n\cdot \ln(x)}{x^n}= \lim_{x\to{+\infty}} \lim_{n\to{+\infty}} \frac{n\cdot \ln(x)}{x^n}.$$
Now, the inner limit is 0 for all $x>1$ so it leaves $$\lim_{x\to{+\infty}} \frac{\ln(x)}{x^n} = \lim_{x\to{+\infty}} 0 = 0.$$
Is this proof correct?
