In the ongoing effort of dealing with abstract duplicates. This question is about the lemma:
Lemma Let $k \ge 2$, $p$ prime and $a$ coprime to $p$. Then $$p^2\!\mid a n^k+ bp\iff p\mid n,b.$$
This lemma answers the following kinds of questions:
In the ongoing effort of dealing with abstract duplicates. This question is about the lemma:
Lemma Let $k \ge 2$, $p$ prime and $a$ coprime to $p$. Then $$p^2\!\mid a n^k+ bp\iff p\mid n,b.$$
This lemma answers the following kinds of questions:
Lemma $\, \ p^2\!\mid a n^k+ bp\iff p\mid n,b,\ $ if $\ \color{#0a0}{k\ge 2}\,\ $ & $\ a\,$ is $\rm\color{#90f}{coprime}$ to ${\rm\color{#c00}{prime}}\ p$ (or ${\rm\color{#c70}{squarefree}}\ p$)
Proof $\ \ (\Leftarrow)\ \ $ Clear by $\,p\mid b,n\,\overset{\times\, p}\Rightarrow\,p^2\mid bp, n^{\color{#0a0}k}_{\phantom{|_{|_.}}}$ and basic divisibility laws.
$\ (\Rightarrow)\ $ $\,p\mid an^k\! + bp\overset{\color{#90f}{(a,p)=1}}\Longrightarrow\! p\mid n^k\color{#c00}{\overset{\rm EL}\Rightarrow}\, p\mid n\,$ $\overset{\color{#0a0}{k\,\ge\, 2}}\Longrightarrow\,p^2\mid n^k\Rightarrow p^2\mid pb\,\Rightarrow\,p\mid b$
using basic divisibility laws, and $\,\color{#c00}{\rm EL}$ = Euclid's Lemma.
Remark $ $ It also holds true for ${\rm\color{#c70}{squarefree}}\:p\,$ because they are precisely those integers satisfying the key middle inference, i.e. $\ p\mid n^k\color{#c00}\Rightarrow\,p\mid n,\,$ for all integers $\,n$.