When implementing a clustering algorithm earlier today I investigated (in Matlab syntax):
$$\text{det}(\text{abs}({\bf d - d}^T)), {\bf d }\in \mathbb R^{N}$$
edit: In non-Matlab syntax: $$\text{det}(\text{abs}({\bf d1}^T-{\bf 1d}^T))$$
In other words the determinant of a matrix consisting of absolute value of pairwise differences.
Now since determinants are usually terrible to calculate, this is mostly of a curiosity of mine, but it seems that if any two elements of $\bf d$ are the same, then the above determinant is 0, and if no two elements of $\bf d$ are the same, then determinant $\neq 0$.
Can we prove this?
For example the vector ${\bf d} = [1,2,3]^T$:
$$\text{det}(\text{abs}({\bf d - d}^T)) = \begin{bmatrix}|1-1|&|1-2|&|1-3|\\|2-1|&|2-2|&|2-3|\\|3-1|&|3-2|&|3-3|\end{bmatrix} = \left\|\begin{bmatrix}0&1&2\\1&0&1\\2&1&0\end{bmatrix}\right\|\neq 0$$ And the vector : ${\bf d} = [3,2,3]^T$: $$\text{det}(\text{abs}({\bf d - d}^T)) = \begin{bmatrix}|3-3|&|3-2|&|3-3|\\|2-3|&|2-2|&|3-3|\\|3-3|&|3-2|&|3-3|\end{bmatrix} = \left\|\begin{bmatrix}0&1&0\\1&0&1\\0&1&0\end{bmatrix}\right\|= 0$$