Brainstorming:
$1\underbrace{333...3}_{m-1}1 =$
$1\underbrace{000....0}_{m-1}1 + \underbrace{3333....}_{m-1}0=$
$(10^m + 1)+ 10*\frac {9999....9}3= (10^m+1) +10*\frac {10^{m-1}-1}3$
... okay..
$19$ is prime and by Fermats little theorem $10^{18} \equiv 1\pmod {19}$ and so $10^m + 1\equiv 10^a + 1\pmod {19}$ where $m = 18k + a; 0 \le r < 18$
And the multiplicative inverse of $3\mod 19$ is... lesseee .... $3\times 6=18\equiv -1$ so $3\times (-6)\equiv 3\times 13 \equiv 1 \pmod {19}$.
so $10*\frac {10^m-1}3\equiv 10*13(10^m-1)\equiv 13*10^m-130\equiv 13*10^a+3\pmod {19}$
So $19|1\underbrace{333...3}_{m-1}1$ precisely when
$(10^a +1)+ 13*10^a +3=14*10^a + 4\equiv 0 \pmod 19$.
.... Alright...
It's reasonable to figure $10$ is likely to be a primitive root modulo $19$ so there there is only one solution to the above and if that sole solution happens to be $a = 14$ then $m\equiv 14\pmod{18}$ and $m$ is of the form $14+18k$ and $1\underbrace{333...3}_{m-1}1$ has $m + 1 = 15+18k$ digits.
so... it that the case?
$10^{14} = 4^7*5^{14}= 20^7*5^7\equiv 1^7*5^7=25^3*5\equiv 6^3*5\equiv 3^3*8*5\equiv 27*40\equiv 8*2\equiv -3\pmod {19}$
So $14*10^{14} +4 \equiv 14*(-3) + 4\equiv -38\equiv 0 \pmod{19}$.
So... deep breath....
If $1\underbrace{333...3}_{m-1=13+18k}1$ has $15+18k$ digits then
$1\underbrace{333...3}_{m-1=13+18k}1 = $
$(10^{14+18k}+1)+ 10\frac {10^{13+18k}-1}3 \equiv$
$(10^{14} + 1) + 13*10(10^{13}-1)\equiv $
$14*10^{14} + 4\equiv 0\pmod {19}$.
....
If we want to prove this is the only time $19|1\underbrace{333...3}1$ we just have to prove $10$ is a primitive root modulo $19$ which is a matter of showing $10^{6,9}\not \equiv 1\pmod {19}$. ($10^a\equiv 1$ only if $a|18$. If $10^k\equiv 1$ then $10^{mk}\equiv 1$ so if $10$ is not a primitive root one of $10^{6,9}$ will be equivalent to $1$)
$10^3 =1000 = 950 + 38+12\equiv 12\equiv -7\pmod{19}$ so $10^6 \equiv 49\equiv 11\equiv -8\equiv 6$ and $10^9\equiv (-7)*(-8)=56\equiv -1\pmod {19}$.
.......
Ah, geez.......
$1333.....31\equiv 0 \pmod {19} \iff$
$399....993\equiv 0 \pmod {19} \iff$ (because $3$ and $19$ are relatively prime)
$39999....93 +7 = 4000....0 = 4\times 10^{\text{number of digits}-1} \equiv 7\pod{19} \iff $
$40\times 10^{\text{number of digits} -2}\equiv 7\iff$
$2\times 10^{\text{number of digits} -2}\equiv 7\iff$
$20\times 10^{\text{number of digits}-3}\equiv 7\iff$
$10^{\text{number of digits}-3}\equiv 7\iff$
$10^{\text{number of digits}} \equiv 7000 \equiv 8\pmod {19}\iff$
$\text{number of digits} \equiv 15\pmod {18}$.
Would have been a lot cleaner! (Once we prove $10$ is a primitive root modulo $19$).
=====
Aw... triple geez!
If $10$ is a primitive root modulo $19$ then $10^k; k=0...,18$ is a complete residue system $\mod 19$.
So if $k = 1333.... 31$ has $m = a+18j;a = 0...17$ digits then
$3k + 7 = 400000....0 = 4\times 10^{m-1}$ is equivalent to
$10^bk + 10^c \equiv 10^d10^{m-1}\equiv 10^{a+d-1}\pmod {19}$ where $10^b \equiv 3\pmod {19}$ and $10^{c}\equiv 7$ and $10^d \equiv 4$ which is equivalent to
$k \equiv 10^{a+d-1-b\pmod {18}}- 10^{c-b}$ (where $a+d-1-b\pmod{18}$ is a positive integer)
And $19|k$ if and only if $a+d-1-b \equiv c-b\pmod 18$.
$10^k \equiv 1, 10, 5,12, 6,3,11, 15, 17, 18,9,14,7,13,16,8,4,2$
So $b= 5; c=12; d=16$ and for to solve:
$a+d-1-b\equiv c-b$
$a + 16-1-5\equiv 12-5\pmod {18}$
$a \equiv 15\pmod 18$.