We have the following proposition in Real Analysis
Let $X\subseteq\mathbb{R}$, let $f: X\rightarrow\mathbb{R}$ be a function, let $E\subseteq X$, let $x_{0}\in\overline{E}$ and let $L\in\mathbb{R}$. Then the following are equivalent: $(a)$ $\lim_{x\rightarrow x_{0};x\in E} f(x) = L$. $(b)$ For every sequence $(a_{n})_{n = 0}^{\infty}$ of elements in $E$ such that $\lim_{n\rightarrow\infty}a_{n} = x_{0}$ we have $\lim_{n\rightarrow\infty}f(a_{n}) = L$.
The limit superior of a real-valued function is defined as $\limsup_{x\rightarrow x_{0};x\in E}f(x) = \inf_{\varepsilon >0}\sup_{|x-x_{0}| < \varepsilon; x\in E}f(x)$. Is the following generalization of the above proposition true?
Let $X\subseteq\mathbb{R}$, let $f: X\rightarrow\mathbb{R}$ be a function, let $E\subseteq X$, let $x_{0}\in\overline{E}$ and let $L\in\mathbb{R}$. Then the following are equivalent: $(a)$ $\limsup_{x\rightarrow x_{0};x\in E} f(x) = L$. $(b)$ For every sequence $(a_{n})_{n = 0}^{\infty}$ of elements in $E$ such that $\lim_{n\rightarrow\infty}a_{n} = x_{0}$ we have $\limsup_{n\rightarrow\infty}f(a_{n}) = L$.
Thoughts: This is what I have got so far: Suppose $(a)$ holds and let $(a_{n})_{n = 0}^{\infty}$ be a sequence of elements in $E$ such that $\lim_{n\rightarrow\infty}a_{n} = x_{0}$. Then for every $\varepsilon > 0$ there exists $N_{\varepsilon}\in\mathbb{N}$ such that for all $n\geq N_{\varepsilon}$ we have $a_{n}\in\{x\in E: |x-x_{0}| < \varepsilon\}$. Therefore, for all $n\geq N_{\varepsilon}$ we have $f(a_{n})\leq \sup\{f(x)\in E: |x-x_{0}| < \varepsilon\}$. $$\implies \limsup_{n\rightarrow\infty}f(a_{n})\leq \sup_{|x-x_{0}| < \varepsilon; x\in E}f(x)$$ Since this inequality is true for every $\varepsilon > 0$ we get $$\limsup_{n\rightarrow\infty}f(a_{n})\leq \inf_{\varepsilon > 0}\sup_{|x-x_{0}| < \varepsilon; x\in E}f(x) = \limsup_{x\rightarrow x_{0};x\in E}f(x) = L$$ If the proposition is true, how would one go about showing the reverse inequality and also the converse (i.e. $(b)\implies (a)$)?