$X_1, X_2, ..., X_n$ are i.i.d random variables with mean $\mu$ and variance $\sigma^2$. $\bar{X_n} = S_n/n$ where $S_n = X_1 + X_2 + ... + X_n$. Show that
$$ E\Big[\sum_{i=1}^{n}(X_i - \bar{X_n})^2\Big] = (n-1)\sigma^2 $$
Attempt:
$$ E\Big[\sum_{i=1}^{n}(X_i - X_n)^2\Big] = E\Big[\sum_{i=1}^{n}~X_i^2 - 2X_i\bar{X_n} + \bar{X_n}^2\Big] \tag{1} $$
$$ = \sum_{i=1}^{n}E\Big(X_i^2 - 2X_i\bar{X_n} + \bar{X_n}^2) \tag{2} $$
$$ = \sum_{i=1}^{n}\Big(E(X_i^2) - 2E(X_i\bar{X_n}) + E(\bar{X_n}^2)\Big) \tag{3} $$
I don't know how to proceed.