Suppose I have a function $f(x)=x$
And I can rewrite the function as follows :
$$x=e^{\ln{x}}$$
Rewrite it again in Maclaurin series form:
$$e^{\ln{x}}=\sum_{n=0}^{\infty} \frac{\ln^n{x}}{n!}$$
So we have
$$x=\sum_{n=0}^{\infty} \frac{\ln^n{x}}{n!}$$
When I plug $x=1$ into the equation, then:
$$\begin{align} 1&=\sum_{n=0}^{\infty} \frac{\ln^n{1}}{n!}\\ &=\sum_{n=0}^{\infty} \frac{(\ln{1})^n}{n!}\\ &=\sum_{n=0}^{\infty} \frac{0^n}{n!}\\ &=\sum_{n=0}^{\infty} \frac{0}{n!}\\ &=\sum_{n=0}^{\infty} 0\\ &=0\\ \\ \therefore 1&=0 \end{align}$$
Why this can be happen?
Please tell me. Thanks.