The following classical generalization
$$\sum_{n=1}^\infty\frac{(-1)^{n}H_n}{n^{2a}}=-\left(a+\frac 12\right)\eta(2a+1)+\frac12\zeta(2a+1)+\sum_{j=1}^{a-1}\eta(2j)\zeta(2a+1-2j)$$ where $\eta(a)=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^a}=(1-2^{1-a})\zeta(a)$ is the Dirichlet eta function.
was proved by G. Bastien here page 7 Eq. 17 and also by Cornel here.
I am trying to prove it in a different way but came across an integral that can be calculated by Beta function but I want it in $\zeta$ if possible to get the right result.
Here is my approach which follows from the same idea of my solution here:
By using $$\frac1{n^{2a}}=-\frac1{(2a-1)!}\int_0^1x^{n-1}\ln^{2a-1}(x)\ dx$$
we can write
$$\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^{2a}}=-\frac1{(2a-1)!}\int_0^1\frac{\ln^{2a-1}(x)}{x}\left(\sum_{n=1}^\infty(-x)^nH_n\right)\ dx$$
$$=\frac1{(2a-1)!}\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx=\frac1{(2a-1)!}I_a\tag1$$
$$I_a=\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx-\underbrace{\int_1^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx}_{x\mapsto 1/x}$$
$$=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx+\color{blue}{\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{1+x}dx}-\int_0^1\frac{\ln^{2a}(x)}{1+x}dx$$
By adding
$$I_a=\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx=\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x}dx-\color{blue}{\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{1+x}dx}$$
to both sides, the blue integral nicely cancels out and we get
$$2I_a=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx+\underbrace{\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x}dx}_{IBP}-\int_0^1\frac{\ln^{2a}(x)}{1+x}dx$$
$$=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx-\frac{1+2a}{2a}\int_0^1\frac{\ln^{2a}(x)}{1+x}dx$$
where
$$\int_0^1\frac{\ln^{2a}(x)}{1+x}dx=\sum_{n=1}^\infty(-1)^{n-1}\int_0^1 x^{n-1}\ln^{2a}(x)dx=(2a)!\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^{2a+1}}=(2a)!\eta(2a+1)$$
so
$$I_a=\frac12\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx-\left(a+\frac12\right)(2a-1)!\eta(2a+1)\tag2$$
Plug $(2)$ in $(1)$
$$\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^{2a}}=-\left(a+\frac12\right)\eta(2a+1)+\frac1{2(2a-1)!}\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx\tag{3}$$
So any idea how to evaluate the integral in $(3)$ in a way that completes my proof?