0

$$\int_0^{+\infty}\sin x^2dx$$

My work:

Let $x^2=t$. Then $\int_0^{+\infty}\sin x^2dx=\int_0^{+\infty}t\sin tdt$

Is it correct? How I will can finish it?

wolfram

Roman83
  • 18,308

1 Answers1

2

This is a Fresnel integral. It equals to $\sqrt{\frac{\pi}{8}}$.

$\int_{0}^{+\infty}\sin(x^2)dx = \int_{0}^{1}\sin(x^2)dx + \int_{1}^{+\infty}\sin(x^2)dx$.

The first integral is obviously bounded.

The second integral can be rewritten (as pointed out above in the comments) as

$\int_{1}^{+\infty}\sin(x^2)dx = \left|\begin{array}{c} x^2 = t \Rightarrow 2xdx = dt \\ dx = \frac{dt}{2x} = \frac{dt}{2\sqrt{t}}\end{array}\right| = \int_{1}^{+\infty}\sin(t)\frac{1}{2\sqrt{t}}dt$.

The latter integral converges according to Dirichlet's test:

Let us consider the following integral $\int_a^{+\infty}f(t)g(t)dt$.

In our case,

  • $a = 1$,
  • $f(t) = \sin(t)$,
  • $g(t) = \frac{1}{2\sqrt{t}}$.

1) If the integral of a function $f(t)$ is uniformly bounded over all intervals within $[a, +\infty)$. (TRUE)

2) If $g(t)$ is a monotonically decreasing non-negative function. (TRUE)

Then the integral $\int_a^{+\infty}f(t)g(t)dt$ is a convergent improper integral.

Eugene
  • 1,768