$$\int_0^{+\infty}\sin x^2dx$$
My work:
Let $x^2=t$. Then $\int_0^{+\infty}\sin x^2dx=\int_0^{+\infty}t\sin tdt$
Is it correct? How I will can finish it?
$$\int_0^{+\infty}\sin x^2dx$$
My work:
Let $x^2=t$. Then $\int_0^{+\infty}\sin x^2dx=\int_0^{+\infty}t\sin tdt$
Is it correct? How I will can finish it?
This is a Fresnel integral. It equals to $\sqrt{\frac{\pi}{8}}$.
$\int_{0}^{+\infty}\sin(x^2)dx = \int_{0}^{1}\sin(x^2)dx + \int_{1}^{+\infty}\sin(x^2)dx$.
The first integral is obviously bounded.
The second integral can be rewritten (as pointed out above in the comments) as
$\int_{1}^{+\infty}\sin(x^2)dx = \left|\begin{array}{c} x^2 = t \Rightarrow 2xdx = dt \\ dx = \frac{dt}{2x} = \frac{dt}{2\sqrt{t}}\end{array}\right| = \int_{1}^{+\infty}\sin(t)\frac{1}{2\sqrt{t}}dt$.
The latter integral converges according to Dirichlet's test:
Let us consider the following integral $\int_a^{+\infty}f(t)g(t)dt$.
In our case,
1) If the integral of a function $f(t)$ is uniformly bounded over all intervals within $[a, +\infty)$. (TRUE)
2) If $g(t)$ is a monotonically decreasing non-negative function. (TRUE)
Then the integral $\int_a^{+\infty}f(t)g(t)dt$ is a convergent improper integral.